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Maximum Information Coverage and Monitoring
Path Planning With Unmanned Surface Vehicles

Using Deep Reinforcement Learning

Samuel Yanes Luis1⋆, Daniel Gutiérrez Reina2, and Sergio Toral3

University of Seville, Sevilla, Spain {syanes1,dgutierrezreina2,storal3}@us.es

Abstract. Manual monitoring large water reservoirs is a complex and
high-cost task that requires many human resources. By using Autonomous
Surface Vehicles, informative missions for modeling and supervising can
be performed efficiently. Given a model of the uncertainty of the measure-
ments, the minimization of entropy is proven to be a suitable criterion
to find a surrogate model of the contamination map, also with complete
coverage pathplanning. This work uses Proximal Policy Optimization, a
Deep Reinforcement Learning algorithm, to find a suitable policy that
solves this maximum information coverage path planning, whereas the
obstacles are avoided. The results show that the proposed framework out-
performs other methods in the literature by 32% in entropy minimization
and by 63% in model accuracy.

Keywords: Deep Reinforcement Learning · Informative Path Planning
· Autonomous Surface Vehicles.

1 Introduction

More than 80% of human activities wastewater is discharged into rivers and
seas without prior treatment, making the task of monitoring hydrological re-
sources essential for the sustainability of the planet and developing populations
[1]. Manual monitoring of water quality in very large lakes and rivers is a costly
task, especially when the environment is polluted and can pose a risk to field
operators. Additionally, manual monitoring is inefficient, as manned vessels are
heavier and tend to use fossil fuels. On the other hand, the deployment of static
sensor networks has certain disadvantages. The measurement points are fixed
and cannot change their trajectory depending on the information needs of biol-
ogists and authorities.

This work proposes the use of autonomous surface vehicles (ASVs) for dy-
namic monitoring of biologically at risk scenarios, such as Lake Ypacaráı, where
spills and uncontrolled eutrophication have caused a dangerous bloom of blue-
green algae colonies. With these electric vehicles equipped with high-quality

⋆ Participation financed by the Ministry of Universities under the FPU-2020 grant of
Samuel Yanes Luis and by the Regional Govt. of Andalusia under PAIDI 2020 funds
- P18-TP-1520.
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2 S. Yanes, D. Gutiérrez-Reina, and S. Toral.

sensor modules to measure turbidity, ammonium, dissolved oxygen, etc., multi-
objective monitoring missions can be carried out (see Fig. 1). The use of these
vehicles, however, requires the development of an intelligent routing module ca-
pable of dealing with the environmental monitoring requirements, which are:
planning obstacle-free paths, sampling the entire objective surface with mini-
mization of the redundancy, and a surrogate model that truly represents the
sampled variables. The informativeness criterion, from the perspective of In-
formation Theory, can be designed using entropy as an indicator of the model
uncertainty of the lake variables. Let there be a surrogate model f̂(X), repre-
senting the value of a pollution variable in the navigable domain X ∈ R2, the
reduction of the entropy H(X|f) by incorporating new information implies a
decrease of the information clutter, that is, the certainty about the obtained
model. The objective of an information planner will then be to maximize the
information gain ∆I from an instant t to t+ 1.

Finding the set of samples that reduce the entropy of the process while avoid-
ing the nonnavigable areas makes this problem, called the Maximum Informa-
tion Coverage Path Planning Problem (MICPP), nonpolynomial hard. Due to
the unmanageable dimension of the possibilities in tracing a route within the
lake that meets the requirements, it is necessary to use Artificial Intelligence
(AI) or Metaheuristic Optimization techniques to find solutions that, in most
cases, are suboptimal. In this work, we propose the use of deep reinforcement
learning (DRL) algorithms to find solutions to the problem. With an a priori
model of the covariance of the variables (kernel) and the use of a robust opti-
mization algorithm of a deep policy (PPO), a framework is proposed that makes
it possible to find good solutions to the MICPP problem in a reasonable amount
of time. Furthermore, this framework allows one to obtain routes that meet a
second objective: detecting possible pollution peaks that are difficult to model.
As the treatment of the information is independent of any physical model and
only bases its optimality on the entropy decrease, it can be applied in a wide
range of cases: gas leakage detection, electromagnetic indoors characterization,
patrolling and surveillance, etc.

Deploy position

Fig. 1. ASV prototype (right) developed for monitoring the Lake Ypacaráı. The ASV is
equipped with a high performance sensor module that is able to measure pH, dissolved
oxygen, turbidity, and ammonia concentration. Every mission starts from the deploy
zone marked in the map (left).
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The main contributions of this work are:

– A Deep Reinforcement Framework to solve the Maximal Distributed Infor-
mation Coverage problem and global path planning in the Ypacaráı Lake.

– An analysis of the stability, generalization, and performance of the proposed
DRL approach and other well-known planning heuristics.

This article is organized as follows. In Section II, an overview of recent ad-
vances in patrolling and monitoring using autonomous vehicles is presented. In
Section III, the problem is presented formally with its assumptions, and the
DRL framework is explained. In Section IV, the simulations are described with
an analysis of the results. Finally, the conclusions and future lines are described
in Section V.

2 State of the art

The use of Unmanned Surface Vehicles for monitoring aquatic environments is
becoming increasingly common thanks to the development of robotics technology
and battery autonomy. In [2], the use of inexpensive surface vehicle swarms is pro-
posed for sea border patrolling and environmental monitoring. In [3], an aquatic
robot is also used to perform an autonomous bathymetry study in oceanographic
contexts. These works use sensor modules and network connectivity to perform
their tasks and avoid obstacles.

If we focus on the task of monitoring hydrological resources, we can separate
the contributions of the literature into three topics: modeling [4, 5], patrolling
[6, 7], and coverage [8, 9]. In the first branch, the ultimate goal is to find a scalar
field that represents the environmental variables of water (turbidity, pH, etc.).
In works such as [4], the use of Bayesian optimization algorithms together with
Gaussian processes is proposed for obtaining faithful models with few samples. In
this sense, our proposal includes the use of Gaussian processes as a way to obtain
a model of the environment. Other contributions such as [5] explicitly work on
multi-objective optimization, while in our proposal the coverage tries to find a
path independent of the underlying variables. In the second application, ASVs
are typically used to solve the homogeneous [6, 7] and heterogeneous patrolling
problem. In the first case, the aim is to find periodic routes that minimize the
average visit time of each area, while in the second case, this time is weighted
according to a previously specified importance map. These approaches have in
common that the map is modeled as a discrete, metric, undirected graph, the
resolution of which severely affects the dimension of the problem. In this new
framework, on the other hand, the resolution of the map does not affect the
complexity of the problem, since the state and action space are continuous. In
the third application, vehicles can be used to cover, given a path length, the
maximum possible area [8]. This work proposes to maximize the area covered by
the vehicle by using a Genetic Algorithm that penalizes passing through already
visited areas. In [9], a similar approach is used to adapt to the detection of
cyanobacterial blooms in the same Lake Ypacaráı. Both approaches to the full
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coverage problem have as a counterpart that the vehicle is limited to perform
straight trajectories from shore to shore of the lake. In addition, coverage is
considered binary (covered or uncovered). Both limitations are overcome in this
work when it is specified, in the first case, that the action space can take any
direction at each instant and, in the second case, that the coverage level is
measured with a smooth function in the circular surrounding of every sample
(radial kernel), since the underlying real scalar field can be considered smooth
as well.

Regarding the use of DRL for autonomous vehicle monitoring, there are many
examples in the literature that implement deep policy optimization. In the case
of [10], a Monte Carlo optimization is used to minimize entropy in the task of
monitoring crop fields. The main differences of our proposal with this one are i)
the action space used in this work is continuous, which increases the complexity
of the solutions, and ii) in [10] terrain constraints are not taken into account.
In this work, we consider that the agent must adapt to a real morphology with
non-navigable areas, which means not only finding informative routes, but also
avoiding obstacles.

3 Methodology

3.1 Sequential decision problem

The MICPP simultaneously addresses two learning problems: i) the vehicle must
find navigable routes as long as possible to maximize the sampled area, and ii)
these routes must optimally minimize the information entropy given a model of
uncertainty of environmental variables. This is a sequential decision problem,
since the vehicle must choose, at each instant, which next point pt+1 to move to
achieve both objectives. This sequential process is defined as a Markov Decision
Process (MDP) in which the scenario with state st, the agent performs an action
at according to a policy π(st) that maps s to a which generates a reward rt
according to a reward function R(st, at). Within this framework, the ASV must
learn to decide at every instant the next point of movement that maximizes the
episodic discounted reward. The optimal policy π∗(st) is:

π∗ = max
π

T∑

t=0

Rπ(st, at) (1)

In this mathematical context, the ASV takes a sample of the water variables,
updates its surrogate model and uncertainty, and decides which point to move
to until a complete path is completed. In this work, we model the uncertainty of
the process using a decreasing radial function (RBF kernel). This kernel function
maps the correlation of two samples (x, x′) depending on the Eulerian distance
d and a scaling parameter l. The further the physical points, the lower the
correlation between the samples.

K(x, x′) = exp

(
−d(x, x

′)2

2l

)
(2)
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This a priori model of the correlation is selected because it fits the only
hypothesis that the underlying ground truth is smooth and the data behave like
a multivariate Gaussian distribution (MGD). In this way, it is possible to obtain
the correlation between a set of observation points Xobs by evaluating pairwise
every physical point on the map:

Σ[X] = K(x, x′) ∀x, x′ ∈ X (3)

Hence Σ[Xobs], constitutes the covariance matrix of the observation points.
When a new measurement is incorporated into the measured set X[meas], the
conditioned correlation matrix noted as Σ[Xobs|Xmeas] can be calculated as:

Σ[Xobs|Xmeas] = Σ[Xobs]−Σ[Xobs, Xmeas]×Σ[Xmeas]
−1×Σ[Xmeas, Xobs] (4)

This conditioned correlation indicates the uncertainty of the map given an
equally distributed set of observation points and the new measuring points as in
Fig. 2.

Deploy location
Entropic Meas. Point

x

Un
ce

rta
in

ty
 σ

(X
EO

P)

Fig. 2. Process of conditioning. The green squares represent the observation point for
the entropy measurement. Sampling (red crosses) diminishes the uncertainty in those
points according to Eq. (4), as the conditioned covariance between Xobs and Xmeas

decreases.

Then, with the MGD hypothesis, the conditioned entropy H[Xobs|Xmeas]
and the information gain are defined as

H(Σ[Xobs|Xmeas]) =
1

2
log(Σ[Xobs|Xmeas]) +

D

2
(1 + log(2π)) (5)

∆I(Xt|a) = H(Xt)−H(Xt+1|a) (6)

with D as the dimension of Σ[Xobs|Xmeas] [11].
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Once the path is completed and different samples are obtained at each visited
point, this information can be used to obtain a model of contamination of the en-
vironment. Since the model is obtained at the end of the collection of maximally
distributed points, the regression method is independent of decision-making.

With respect to the action space of the agent A, it is defined to be continuous
A ∈ [−1, 1]. An action at represents the heading angle ψ ∈ [−π, π] of the straight
trajectory between the next point and the current one, if possible, with a constant
distance between them of dmeas (see Fig. 3). The ASV is restricted to a distance
budget of 40 km due to the capacity of the battery at a constant speed of 2
m/s. At every reached point, a measurement is taken, and the model is updated.
The path is considered complete when the maximum distance Dmax = 40kms
is reached.

x
y dmeas

pt+1

pt

Fig. 3. Movement of the drone. The action space is contained in [−1, 1].

The reward function R(s, a) should sequentially represent the objective to
be achieved. It is logical to impose that the reward function should be directly
the gain of information ∆I(s, a). To further introduce the objective that the
ASV should have collision-free trajectories, a penalty c = −1 is imposed when
the next point pt+1 chosen by the policy cannot be reached from the current
position. To avoid large changes in the reward range, the information gain is
bounded between -1 and 1. Thus, the reward function would be:

R(st, at) =

{
min(max(∆I(st, at),−1), 1) if valid.

c otherwise

(7)

3.2 DRL Framework

To learn a policy, the Proximal Policy Optimization (PPO) algorithm is chosen,
which is an on-policy reinforcement learning algorithm. In PPO, a deep policy
π(s|θ) is updated using the stochastic gradient descent (SGD) approach over a
loss function. This loss evaluates the advantage of each action in each state as a
function of its reward and weights the gradient step depending on the difference
between the policy prior to the optimization step and the new optimized policy.
By limiting the distance between them, either by saturating the step by ϵ or
penalizing the Kullback-Leibler (KL) distance between them, it is possible to
robustly optimize the behavior without incurring instability so easily.

7
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L(s, a, θk, θ) = min

[
πθ(a | s)
πθk(a | s)A

πθk (s, a) clip

(
πθ(a | s)
πθk(a | s) , 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

]

(8)

In this paper, the double constraint on the policy update has been imposed
to make training more robust: both KL(πθk , πθ) and the fraction in (7) are
penalized. In the PPO, a two-headed neural network is trained. The first head
corresponds to the value function V (s) used in the advantage value Aπθk (s, a),
trained with the accumulated discounted reward R after the n steps of every
mission. The other head directly returns the action bounded by the action limit
[−1, 1].

The state st for the PPO is defined to contain all information available in the
problem. In this way, st is as a 3-channel image of H×W pixels. These channels
correspond to the following. I) A binary representation of the navigation map
Nmap ∈ R. II) The standard deviation σ of each physical point on the map of
the RBF kernel, evaluated in the form of Eq. 2 and represented with the image
shape. III) The discretized path that the ASV has completed so far, represented
by pixels with values in [0,1], where 1 corresponds to the actual position and 0
for the starting position. The latter channel merges temporal dependencies to
overcome the Markovian assumption of the reward: it must only depend on the
current state and the current action.

Regarding the deep policy, the Convolutional Neural Network (CNN) is im-
plemented for estimating the features of the state and processing the next action.
The CNN backbone is composed of four 2D convolutional layers of [128, 64, 16,
16] filters, respectively. After the convolutional structure, a dense neural network
(DNN) transforms the features into an action π(s) and a state-value V (s). The
DNN is composed of 3 lineal layers of 256 neurons and 3 layers of 64 neurons
in every separate head for the action and state-value. The activation function is
the Leaky Rectifier Linear Unit (Leaky-ReLu) to avoid the dying-ReLu effect of
low-value gradients. See Fig. 4 for the complete architecture.

4 Simulations and Results

This section discusses the hyperparameterization of the PPO algorithm, the use-
fulness of the reward function in terms of stability, and finally, the comparison of
the results with other algorithms proposed in the literature for similar problems.
To compare the model accuracy, a Shekel function 1 with randomly positioned
and random size peaks is implemented to represent the scalar contamination field
f to cover (see Fig. 5). The simulations were executed using an AMD Ryzen9
3900 (3.8 GHz) with a Nvidia RTX 2080 Super-8GB GPU and 16 GB of RAM.

1 https://deap.readthedocs.io/en/master/code/benchmarks/shekel.py
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Fig. 4. CNN proposed for the deep policy. It is composed by a convolutional backbone
of 4 blocks and a two-head dense block. The activation function is Leaky-ReLu.
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Fig. 5. Six random ground truths representing different scalar variables that the ASV
must cover and model in the informative mission. The generator function is the Shekel
function with a random number of peaks with random sizes uniformly distributed
across the map.

4.1 Evaluation Metrics

For the analysis of the results, different metrics have been used to describe the
utility of the learned policy.

– AER: The Accumulated Episodic Reward. It represents the decrease in total
entropy over the mission time.

– Anr: Represents the effective area in (km2) covered by the ASV. A zone x
is considered covered if the uncertainty σ(x) is lower than 0.05.

– MSE: Mean square error between the surrogate model used and the vari-
ables ground truth.

– ξ: Peak detection rate. In the presence of random peaks k, that is, local
maxima of the ground truth of contamination, the average rate of detected
peaks ξ = E[kdetected/k]. A local maximum is considered detected when the
uncertainty in its location is lower than 0.05.
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4.2 Learning results

For the simulations, the hyperparameters in Table 1 were used. The PPO algo-
rithm is less sensible to the selection of hyperparameters, and the following values
were selected by trial. Every execution is equivalent to 1×106 steps. The learning
rate was linearly annealed from 1 × 10−4 to 1 × 10−5 to enhance the stability
of the learning and avoid catastrophic forgetting. In regards to the termination
condition of the episode, two different approaches have been tested: apply the
penalization and end the episode when colliding, or apply the penalization and
let the episode continue from the same previous state.

Hyperparameter Value

Clip value (ϵ) 0.2
Learning Rate (α) 1× 10−4 → 1× 10−5

max. KL permitted 5
Discount factor (γ) 0.95

Batch size (B) 64
Entropy loss regularization 0.01

Surrogate loss horizon (nsteps) 512
Collision penalty (c) -1
Kernel lengthscale (l) 10

Table 1. Hyperparameters involved in the PPO algorithm.
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Fig. 6. Learning curves.

In Fig. 6 is shown the learning curves of the optimization process. The op-
timization shows a robust convergence to a high-reward solution. It is observed
that the results of the first variant of the algorithm are more robust to the typi-
cal learning instabilities of DRL. The continuous penalty in the case of failure to
terminate the episode degenerates the policy to the point of unlearning. The two
main tasks can be considered learned: the length of the episode grows monotoni-
cally on average throughout the process until the maximum path length of 40 km
is reached. This indicates that the deep agent assimilates the terrain constraints.
On the other hand, the task of entropy minimization is effectively performed,

10
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since the trajectories have an increasingly informative character as the training
proceeds.

It is important to note that the policy resulting from optimization with PPO
π(s; θ) is a stochastic policy whose output is a Gaussian distribution N (µ, σ). As
training progresses, pi(s; θ) becomes more deterministic with a smaller standard
deviation. This results in the fact that, despite having learned to synthesize
collision-free trajectories, it happens that sampling an action may produce one.
To verify the best behavior learned, the performance evaluation must force the
action with the highest probability at = median [π(s, θ)].

4.3 Metric comparison with other methods

To compare the results of the proposed method, five different heuristics from
the literature have been implemented: i) a lawn mower (LM) trajectory, ii) GA
optimization, iii) a collision-free random search, iv) greedy policy with respect to
σ(X), and v) greedy policy with respect to the expected improvement of a Gaus-
sian process like in [4]. Ten different scenarios not seen in DRL optimization have
served as a validation pool. In relation to MSE metrics, two regression methods
have been used with the samples taken: the first is a Gaussian process as in [4],
and the second method is a Support Vector Regressor (SVR). Both regression
models use an RBF kernel with the same parameters as the one proposed to
compute the uncertainty model.

LM GA σ-greedy EI-greedy Random DRL

Metric µ σ µ σ µ σ µ σ µ σ µ σ

AER 83.10 0 72.75 0 70.31 9.17 57.28 9.19 53.61 10.36 98.75 7.08

Anr 62.13 0 70.09 0 57.44 8.03 39.74 6.15 46.56 9.94 94.91 8.74

ξ 0.54 0.23 0.52 0.28 0.48 0.29 0.34 0.15 0.42 0.18 0.72 0.20

MSEgp 0.08 0.10 0.11 0.13 0.05 0.04 0.18 0.13 0.20 0.22 0.04 0.09

MSEsvr 0.25 0.12 0.35 0.23 0.30 0.11 0.54 0.67 0.55 0.23 0.07 0.03

Table 2. Statistical results of different approaches for the coverage and informative
coverage in the validation scenarios-

In Table 2, the comparative results are presented. It can be seen that the
proposed algorithm is able to realize much more spatially distributed trajectories
for entropy minimization. The entropy minimization factor reflected in the AER
and the effective coverage area is significantly higher in the proposed algorithm
(32% higher on average with the other approaches). It is logical to think that
these two metrics are closely related since decreasing entropy leads to visiting
uncovered areas and vice versa. In 7, the statistical results of the execution of the

11
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different approaches in the validation set are depicted. The proposed approach
not only obtains better results but also faster within a mission time objective.
This is related to the detection rate of singular events xi. Deep policy, as a
direct consequence of generating a highly distributed path with low redundancy,
achieves 33% more detections than the best-positioned algorithm (LM). The LM
algorithm generates a very intensive path, which achieves good homogeneous
coverage, but too intensive due to monitoring redundancy.

In the MSE using different regression methods, we obtain very good values
with the PPO algorithm, with an improvement of up to 67% using a GPR. This
metric is greatly affected by information redundancy: visiting already covered
areas does not provide extra information, so the proposed algorithm, through
entropy reduction, manages to clearly beat any other informative trajectory for
a wide range of possible ground truths. The fact that this is the case whether
using a GP or an SVR also indicates that entropy is a good criterion for point
selection in scalar-field regression.
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Fig. 7. Process entropy H(Xobs) over a 40 km monitoring mission.

5 Conclusions

In this paper, a new framework based on Deep Reinforcement Learning has been
proposed for minimizing entropy in environmental scenarios using autonomous
vehicles. Training by the PPO algorithm using convolutional networks and a
graphical formulation of the state results in informative paths with high infor-
mation utility. The proposal is capable of beating other algorithms and heuristics
in maximizing information gain, which leads to improvements in other related
metrics more or less directly related to entropy: area covered, location of singular
events, and decreasing error in an arbitrary regression model. The latter is of
interest because the algorithm does not depend on a particular type of model to
work, but rather the improvement follows as a consequence of the information
criterion. Furthermore, this approach raises the possibility of training on scenar-
ios with arbitrary boundary conditions and simultaneously solving the task of
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obstacle avoidance and informational patrolling. It is proposed that, in future
lines of work, a temporal factor can be included in the coverage for the entropy to
be reduced on the time axis also for nonstationary environments. Furthermore,
a next step is the application of different importance criteria, the decrease of
entropy: a non-homogeneous informative coverage that emphasizes areas of high
contamination.
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Abstract. In this work, a real world problem of the vehicle type classifi-
cation for Automatic Toll Collection (ATC) is considered. This problem
is very challenging because any loss of accuracy even of the order of 1%
quickly turns into a significant economic loss. To deal with such problem,
many companies currently use optical sensors (OS) and human observers
to correct the classification errors. Herein, a novel vehicle classification
method is proposed. It consists in regularizing the problem using one
camera to obtain vehicle class probabilities using a set of Convolutional
Neural Networks (CNN), then, uses the Gradient Boosting based classi-
fier to fuse the continuous class probabilities with the discrete class labels
obtained from OS. The method is evaluated on a real world dataset col-
lected from the toll collection points of the VINCI Autoroutes French
network. Results show that it performs significantly better than the ex-
isting ATC system and, hence will vastly reduce the workload of human
operators.

Keywords: Deep learning · computer vision · Intelligent transportation.

1 Introduction

Automatic toll collection (ATC) is a practical use case in computer vision, and
machine lerarning. Although the ATC systems are already deployed in many
countries [18], however, human efforts are yet very much necessary to manually
correct the misclassifications because of economic consequence of any loss of the
classification system.

Recently, the progress in high performance computing, such as cloud comput-
ing with graphics processing units (GPU), coupled with the advances of machine
learning algorithms, such as Convolutional Neural Networks (CNN) [14], accel-
erates the development of a number of computer vision based solutions for AVR
[3,17,20,8,27,1,31,33,5,29,32,10].

This work aims to improve an existing ATC system that uses OS to classify
vehicles for french classification case.

The current system is based on an optical sensor (OS) that makes misclassi-
fications due several reasons: sensor noise, measurements proximity of inter-class
vehicles, and additionally attached items with vehicles.
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While an obvious solution is to update the OS itself, an alternative is to
exploit additional sources of information. Existing ATC setup (see Sect. 2) cap-
tures images for the human operators to manually correct the misclassifications.
This gives an opportunity to exploit the images and to develop a computer vision
based vehicle type classifier using recent approach based on CNN [7]. Further-
more, this classifier has to be integrated with the OS to further enhance the
overall performance. The above points motivate to develop a novel system which
exploits information from both OS and camera by combining results from the
OS, and image classifiers.

To do so, a challenging dataset is collected, where vehicles are categorized
based on their physical measures that decreases the inter-class and increases
the intra-class variations. Besides, it includes a large variations of the captured
images with different conditions, e.g., illumination, occlusion, poses, localization,
multi-vehicle presence, etc., for instance see Fig. 1. This enhances the visual
intra-class variations (e.g., see Fig. 2), and makes the vehicle classification a
significantly challenging problem.

Fig. 1: Examples from different classes at different conditions.

CNN based [7] methods become the de facto standard for image-based object
recognition [23]. It has been vastly adopted by the recent image-based1 vehicle
classifiers [1,31,33,11,5,29,32,10]. Most of them applies the vehicle detection fol-
lowed by classification approach, which has several drawbacks: (a) dependency
on the detectors’ performance; (b) hard to determine the true class when multi-
ple vehicles are present, and (c) increase of the computation time. Considering
these, this research uses the detection-free and holistic-scene based approach for
the CNN based classifiers.

1Vehicle classification has been performed by different sources of information, where
image is one of the important source (see Sect. ?? for others).
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Fig. 2: Intra-class (4 ) variations due to pose and perspectives.

The proposed CNN based classifiers achieves significant improvement as a
stand-alone classifier. However it has some limitations, e.g., a frontal view image
often causes difficulties to distinguish classes 3 and 4, which can be well classified
with the OS. This indicates that a robust method for the ATC problem can
be developed by efficiently combining the image based classifiers with the OS
decisions. Therefore, a novel vehicle type recognition method is proposed, which
performs the ensemble approach at two stages/layers:

1. 1st layer: combines the outputs from two different types of classifiers: (a)
OS based and (b) CNN [14] based. It provides a concatenated vector (of
decision and uncertainty) as an input to the next ensemble layer.

2. 2nd layer: combines the classifiers decisions obtained by training on dif-
ferent weighted sets of the data (output from feature layer). The Gradient
Boosting [6,4] (GB) method is applied to perform this task.

The proposed method is evaluated on the collected dataset and compared with
the existing system. Results indicate that it significantly outperforms the existing
system with a large (99.03% compared to 52.77%) margin, and hence alleviates
the necessity to employ the vast amount of human efforts. Besides, comparison
with a set of CNN based methods shows that it performs better than the state-
of-the-art approaches.

The contributions of this research can be summarized as follows: (a) intro-
duce a challenging and practical vehicle classification use case in the context of
ATC; (b) propose a novel vehicle classification method; (c) propose a modifi-
cation of VGG-16 CNN architecture which significantly (≈ 9 times) reduces its
complexity; (d) achieved very high accuracy and significantly outperform the ex-
isting system (e) provide interesting visual explanations about a CNN classifier
from both vision (using GradCam [24]) and learning (using t-SNE [19]) perspec-
tives and (f) provide an in-depth analysis to discover the remaining challenges
and explore the future works.

This work extends our recent work [26] by incorporating: (a) additional study
of the related work; (b) newer contributions on the method by changing from
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Fig. 3: Existing toll collection set-up.

CNN+OS to CNN1+CNN2+OS ; (c) extensive experiments and evaluation with
possible alternatives methods from the state-of-the-art and (d) enhanced discus-
sions with different visualization strategies.

2 Problem formulation

This paper considers the ATC problem within an existing pay tolls setup in-
stalled throughout the motorways owned by the VINCI Autoroutes company.
This problem requires classifying the vehicles into five distinct classes based on
certain specifications and physical measurements, such as height, weights and
number of axles. The amount of toll payment is determined based on the de-
tected class2 type. Fig. 1(a) illustrates examples from different classes, which are
primarily distinguished as follows:

– Class 1: light vehicles; height less than 2 meters.
– Class 2: intermediate vehicles; height between 2 and 3 meters.
– Class 3: heavy vehicles; height over 3 meters and have 2 axles.
– Class 4: very heavy vehicles; height over 3 meters and have more than 2

axles.
– Class 5: motorbikes, side cars and trikes.

The pay tolls are equipped with several OS, cameras and inductive loops, see
Fig. 3 for an illustration. Existing system uses the decisions from these OS to
classify the vehicle type. The camera is used to capture image/video, which is

2More details of the class types specification are available at https://www.vinci-
autoroutes.com/fr/classes-vehicules.
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later used by the human operators to verify the misclassifications. The inductive
loops are used for vehicle detection on the toll in order to trigger the photo
capture.

The OS is an apparatus disposed at the entrance (called pre-OS) and the
exit (called post-OS) of the toll collection lanes and used to measure the height
and the number of axles of the vehicles. Usually it provides the class label as
the values: 1,2,3,4 and 5. However, occasionally it provides 0 or 9 to indicate a
missing or inconsistent detection.

The vehicle dataset is collected from the cameras located at the pay tolls.
It consists of total 73,638 images: 44,437 of class 1, 8073 of class 2, 11,466 of
class 3, 3,262 of class 4 and 6,400 of class 5. Therefore, the samples for different
classes are distributed non-uniformly, where class 1 has much larger number of
samples compared to others. Fig. 1 illustrates several examples of the images
from the dataset.

3 Proposed Solution

Our method exploits the existing setup (see Fig. 3) and take the data from both
OS and the camera. While the OS directly provides the class label decision,
the camera provides the color image. It adopts the CNN [14] based classification
strategy to determine the vehicle type from the input color images. Next, it fuses
two different categories of classifiers output: (a) the continuous class probabilities
from the CNN classifier and (b) the discrete class labels obtained from two
(pre and post) OS. The fusion is accomplished using the Gradient Boosting [6]
classifier to obtain the vehicle class.

The basic architectural ideas of a CNN [14] consist of the Convolution and
Pooling operations.

The proposed method exploits two different CNN models based architectures.
Then, the Gradient Boosting [6] which is a popular heterogeneous data classifi-
cation method constructs a single strong predictor by iteratively combining the
weaker predictors. This combination is achieved by a greedy procedure, where
the gradient descent is applied in the function space.

Let (Γ t
i )

t=1,2
=
(
γtij
)t=1,2

j=1,2,3,4,5
be the continuous class probabilities obtained

from the CNN-tmodels, Si =
(
sprei , sposti

)
be the discrete decision labels obtained

from the pre-OS and post-OS and yi denote the true class label. Now, let xi =(
Γ 1
i , Γ

2
i , Si

)
=
(
γ1i1, . . . γ

1
i5, γ

2
i1, . . . γ

2
i5, s

post
i , sposti

)
be the concatenated feature

vector obtained by combining Γ t
i and Si. Therefore, xi represents the outcome

of the ensemble (here by concatanation) applied at the 1st layer of the proposed
method. Next, the GB method is used to accomplish the desired ensemble task at
the 2nd layer. The goal of GB method is to find an approximation of a function
F (x) which minimizes the multi-class classification loss LMulticlass (yi, F (xi))
as:

LMulticlass =

∑N
i=1 ωilog

(
e
aiyi∑M−1

j=0 eaij

)

∑N
i=1 ωi

(1)
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where ωi is the weight, ai is the value of the target function for the ith sample.
The proposed method uses the CatBoost algorithm [4] to perform classifica-
tion with the GB method. It is chosen because of its efficiency to fuse multiple
categories of data, particularly the discrete categorical data.

4 Results and Discussion

First, the CNN models are trained to obtain the class probabilities for each im-
age. Then, the GB method is trained, and subsequently used to get the final
class label. The training dataset is selected by randomly splitting the collected
dataset into train/validation/test sets with 70%/15%/15% proportion respec-
tively. This split provides 51.5K samples for the training-set and 11K samples
for both test and validation sets. Distributions of the samples-per-class on all
sets have similarity with the distribution of the entire dataset.

The images from the training set are used to optimize the CNN models
parameters. The CNN models are initialized with the parameters learned for the
ImageNet [23] object classification by the same model. The weighted/balanced
Softmax loss [15,7] is applied as the optimization objective to address the class
imbalance distribution. These weights correspond to the inverse of class volume.
The L2 regularization is applied on the CNN weights. The learning rate is set
to 0.001 and the mini-batch size is set to 100. Data augmentation is applied by
horizontally flipping the images. The Stochastic Gradient Descent (SGD) [14]
method is used for optimization, which is chosen empirically.

The training data for the GB method is obtained by concatenating the out-
puts of the CNN Softmax layer and the one-hot encoded values from OS. The
CatBoost [4] classifier is used with the depth set to 6, learning rate set to 0.03
and the maximum number of iterations set to 500.

This section evaluates the proposed approach on the test set and compare
it with the competitive methods. The classification accuracy is used for the
comparison and the precision measure is used for an in-depth class-wise analysis.
Additionally, the running time is measured to evaluate time complexity.

This research considers a novel vehicle type recognition use case for ATC.
Unfortunately, no existing benchmark is available, except the OS, which are
components of proposed method. Therefore, in order to perform a competitive
evaluation several alternative methods (which could be applied for this task) are
considered as follows:

– Car type Classification by Huttunen et. al. [11] (CCH): used the
AlexNet [13] for detection-free and holistic scene based car classification.

– Object of interest classification (OIC ): existing VMMR [3,?,?,?,?,?,?,?,?,?,?]
methods mostly follow this approach. In order to compare with this type of
methods, a competitive method is developed as follows: (a) crop the object
of interest from the database images using the RetinaNet3 [15] object detec-
tor, pre-trained on the COCO dataset [16]; (b) apply an empirical rule to

3Other object detectors, such as Faster R-CNN [22] and YOLOv2 [21] were explored
and RetinaNet [15] is chosen based on its performance.
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choose the vehicle of interest in case of multiple detection and (c) train a
CNN model on the cropped images. Sect. 4.1 provides additional details.

– Single components of the proposed method: PRE-OS, POST-OS,
CNN-1 and CNN-2.

Table 1: Comparison among the competitive methods using the accuracy (in %)
and computation time (in milliseconds).

Method Acc (%) Time (ms)
CCH 94.77 7
OIC 94.84 387
Fusion of classifiers (ours) 99.03 63
CNN-1 95.71 30
CNN-2 95.36 44
PRE-OS 0.10 NA
POST-OS 52.77 NA

The test set accuracies of these methods are reported in Table 1, which shows
that the proposed method provides the best result (99.03%). Moreover, it not
only outperforms the existing deployed solution (52.77%) significantly, but also
provides reasonably better results than the alternative CNN-based solutions, i.e.
CCH (94.77%) and OIC (94.84%). Indeed, the large performance gap (≈ 4%)
with the stand-alone CNN-based methods reveals the effectiveness of the pro-
posed ensemble approach. Note that the components of the ensemble are chosen
empirically by exploring numerous CNN combinations (see Sect. 4.1 for futher
details). The individual CNN components of the proposed method performs
better than the competitive methods. The comparison with the CCH method
justifies the choice of the CNN models. Moreover, the comparison with the OIC
method justifies the choice of the detection-free classification approach.

Besides accuracy, these methods are compared with the computation time,
that is measured on the NVIDIA T4 GPU machine with 16 GB of GPU-memory.
The right-most column of Table 1 indicates that the proposed appoach is exe-
cuted within a reasonable computation time and hence is well acceptable for the
given ATC task. The OIC approach is the most expensive. Comparison of CCH,
CNN-1 and CNN-2 shows that the computation time is related to the complexity
of the CNN models. Note that, the proposed method runs two CNNs in parallel,
which reduces the time (≈ 10ms).

Next, the chosen ensemble method, i.e. CatBoost [4] is briefly evaluated by
comparing with several commonly used classifiers, such as RF, SVM, MLP and
XGBoost[25]. Note that, the ensemble based on scores averaging is not applicable
for the heterogenious outputs obtained from the CNNs and OS. The test-set
accuracies reported in the Table 2 show that the CatBoost method provides the
best result.
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Table 2: Comparison of the different classification methods to fuse the outputs
from the CNNs and OS.

Method RF SVM MLP XGBoost CatBoost
Acc (%) 98.82 98.90 98.95 98.97 99.03

Next, the accuracy and precision for each vehicle category is studied to an-
alyze the in-depth characteristics of the proposed method and its components.
Table 3 presents the per-class accuracy, from which the observations are: (a) the
proposed method provides the best accuracy for classes 1, 2, 3 and 5 and (b) it
is 1.63% less accurate than the post-OS for class 4. The performance of pre-OS
is very poor4. The post-OS performs best on class 4, well on classes 2 and 5
and poor on class 3 and 1. Indeed, its performance on class 3 and 4 indicates
that it is biased towards the class 4. The accuracies of the CNN models show
that CNN-1 is better for classes 1,2,3 and 5 and CNN-2 (Inception) is better for
class 4. Therefore, the classification strengths of each model for different classes
justify their integration within the proposed method.

Table 4 provides the per-class precision measures, which show that the pro-
posed method gives best precision for all classes. Indeed, from the business per-
spective this measure is the most suitable metric to evaluate the trustworthiness
of a method. Therefore, the high precisions indicate that the predictions from
the proposed method are highly reliable.

Table 3: Accuracy (%) analysis for each vehicle category.

1 2 3 4 5 Total
Proposed 99.92 97.11 97.62 94.91 99.90 99.03
PRE-OS 0.03 0.25 0.29 0.00 0.10 0.10
POST-OS 45.27 86.07 29.21 96.54 82.47 52.77
CNN-1 98.21 88.62 90.65 81.47 99.59 95.36
CNN-2 98.92 90.11 92.74 69.45 99.27 95.71

Next, in Table 5 the confusion matrix of the proposed method is analyzed to
gain further insights on the classification performance. The observations are:

– For class 1 it produces 0.08% error, which are misclassified as class 2 (0.03%)
and class 3 (0.05%).

– For class 2 it produces 2.9% error, which are misclassified as class 1 (1.15%),
3 (1.65% ) and class 4 (0.08%).

4This is due of the source (customer-care centers) of the dataset where the majority
of the images correspond to low confidence pre-OS data.

21



Title Suppressed Due to Excessive Length 9

Table 4: Precision analysis for each vehicle category.

1 2 3 4 5
Proposed 99.66 98.66 97.22 95.88 100.00
PRE-OS 0.10 0.05 0.74 0.00 0.08
POST-OS 95.45 17.90 77.27 92.40 95.10
CNN-1 98.97 86.83 90.08 78.59 99.90
CNN-2 98.65 88.43 89.37 87.66 99.69

Table 5: Confusion matrix computed from the classification results of the pro-
posed method.

True Predicted class
class 1 2 3 4 5 All Recall
1 6661 2 3 0 0 6666 99.92
2 14 1178 20 1 0 1213 97.11
3 8 14 1681 19 0 1722 97.62
4 0 0 25 466 0 491 94.91
5 1 0 0 0 963 964 99.90
All 6684 1194 1729 486 963 11056
Prec. 99.66 98.66 97.22 95.88 100.00

– For class 3 it produces 2.4% error, which are misclassified as class 1 (0.46%),
class 2 (0.81%) and class 4 (1.10%).

– For class 4 it produces 5.1% error, which are misclassified as class 3.
– For class 5 it produces 0.1% error, which are misclassified as class 1.

The results in Table 1 show that the proposed ensemble approach provides
significant (3.32%) improvement compared to its best individual classifier. This
encourages to identify the important features to better understand the contri-
bution of the fusion components. Besides, the PRE-OS = 2 and POST-OS =
4 have been identified as the most important OS features. These provides suffi-
cient evidence to realize that the OS inputs are crucial to identify certain vehicle
properties (e.g. the number of axles) which are difficult to infer from the images.

There are certain scenarios in which the OS are known to perform relatively
poorly for particular classes:

– Vehicles from class 1 may be misclassified as class 2 if it has something on
its roof (e.g. lights or luggage carrier).

– Vehicles from classes 2 and 5 are often confused and require an operator to
correct the misclassifications.

– Vehicles from class 1 with a trailer attached to them should be classified as
class 2 by classification rules, but are usually classified as class 1 by the OS.
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On the other hand, the image could be inadequate for correct classification. For
example, the same truck can be classified as class 3 or 4 based on the presence
of a trailer behind it, which can be invisible in the image. Likewise, the lack
of visibility (due to occlusion or frontal view image only) of the the number of
axles in the image causes the OS to become the only reliable source for correct
classification. Therefore, the combination of image-based class predictions and
the OS labels should outperform the individual components.

4.1 Performance analysis

This section provides more details about several aspects of the proposed method,
possible alternatives of the given problem and finally identifies the limitations
and future scopes.

Selection of the CNN models In order to select the appropriate components
for the proposed ensemble, several CNN models have been explored: VGG-16
[28], Inception [30], AlexNet [13], ResNet50 [9], DenseNet [12] and Xception [2].
These models were trained with the same specifications described previously.

Vision-based visual understanding of the performance can be accomplished
with the Gradient-weighted Class Activation Mapping (Grad-CAM) [24] tech-
nique. It localizes the attention-map or important regions in the image, which is
exploited by the CNN model for classification. Fig. 4 illustrates several examples,
where the success/failure of CNN-1 can be explained by the ability to focus on
the relevant part of the image for the vehicle-class of interest.

Learning based visual discrimination can be realized with the t-distributed
Stochastic Neighbor Embedding (t-SNE) [28] method. A subsample (50%) of the
validation set is used to project the 5-dimensional CNN-1 classification scores
into the 2-dimensional t-SNE output. Fig. 5 provides the illustration and ex-
hibits the overlaps among several classes: 1-2, 2-3 and 3-4. Indeed, for certain
vehicles it is difficult to discriminate the closer classes (e.g., 1-2 and 2-3) when
the height measurement acts as the most prominant measure instead of their
visual appearance. Likewise, the number of axles is significant to discriminate
among the classes 3 and 4. In many cases this feature is partially or fully oc-
cluded in the image, which leads to misclassification by CNN-1. These image
based limitations is difficult to overcome within the existing paytoll setup and
hence left the only choice to use additional data from different sources, such as
the OS.

Object of interest classification This paper adopts the holistic scene based
object classification strategy. In this context, the true class is defined by the class
of the vehicle of interest when multiple objects appear in the image, see Fig. ??
for an example. However, the common approach (followed by the most VMMR
methods) is to apply vehicle detection followed by classification. This sub-section
provides additional analysis on this. Note that, a problem is encountered with
this approach when the object detector fails, i.e., no object of interest is detected
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Fig. 4: Illustration of the correctly and incorrectly classified vehicle images.
Within each parentheses (t, p), the first value t indicates the true class label
and the second value p means the predicted class label. In (a) the resized image
is given; in (b) Grad-CAM illustration; in (c) Guided Grad-CAM.

in the images. In such case, two possibilities are explored: (a) strategy A: discard
the images and (b) strategy B: consider the whole image as the vehicle of interest.
The CNN model is used to train and classify with the above strategies and
the proposed holistic scene based classifier is considered as a benchmark for
comparison. Table 6 provides the test set accuracies and shows the best result
(≈ 1% better than the nearest one) is achieved by the proposed holistic scene
based classifier. For strategy A, two results are obtained: the accuracy only on
the nondiscarded images, and the accuracy by considering the discarded images
as misclassified. It is observed that, compared to Strategy B the accuracy of
strategy A is not better even after discarding the images. This indicates that,
in case of the failure of the vehicle detector it is better to consider the entire
image to represent the vehicle rather than discarding it. This indeed provide
additional evidence to further support the holistic scene based classification.
Moreover, the significant increase of the computational complexity augmented by
the detection method should be taken into account. The combination of both of
these facts motivated this research to pursue the detection-free and holistic scene
based classification approach rather than the detection followed by classification
approach.

Comparison of the existing solution (OS), scene classification and the
out-of-the-box solution This subsection considers a simplified and immediate
solution (from the business point of view), which does not need to collect data
and train models. The RetinaNet [15] model is selected for this purpose. However,
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Fig. 5: T-SNE of CNN-1 output scores for the subsample (50%) of the validation
set. In (a) colors correspond to the true class of the image, while in (b) to the
correct (green) or incorrect (red) classification.

Table 6: Accuracy on the test set for scene classification with CNN-1 model and
OIC.

Model Acc
Scene classification 95.71
OIC, strategy A
(only nondiscarded images) 94.75
OIC, strategy A
(all images) 90.26
OIC, strategy B 94.84

it was pretrained on the COCO dataset [16] which does not provide the similar
class labels required for the ATC task. Therefore, the number of ATC-classes
are reduced to three categories: car, bus/truck, and motorcycle, Table 7 provides
further details of the the class labels mapping. Table 8 provides the comparison,
where the results are obtained for a subset of the test dataset. This subset
(constitutes 94% of the dataset) is constructed by considering the images for
which the pre-trained RetinaNet [15] model has detected at least one vehicle
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Table 7: Matching classes in the simplified problem version, COCO dataset and
VINCI Autoroutes classification guidelines.

Simplified classes COCO dataset VINCI Autoroutes
car car class 1, 2

bus/truck bus, truck class 3, 4
motorcycle motorcycle class 5

Table 8: Analysis of the accuracy (%) with respect to individual vehicle cate-
gories.

Class PRE-OS POST-OS RetinaNet CNN-1
car 75.88 97.38 69.92 99.45
bus/truck 19.62 44.06 99.08 96.47
motorcycle 0.00 83.10 93.43 99.30
All 59.10 86.20 77.32 98.87

with the score higher than 50%. This approach with RetinaNet achieves good
accuracy for classes bus/truck andmotorcycle. However it performs poorly on the
car class and provides an overall accuracy of 77.32%, which is less than the POST
OS performance. The proposed holistic scene based classification with CNN-1
model yields the best overall and class-by-class accuracy, except for bus/truck
class.

Limitations of the proposed method The confusion matrix in Table 5 pro-
vides the misclassified cases. Moreover, manual analysis by human observers is
performed to visually inspect the reasons for the misclassifications. Fig. 6 illus-
trates several examples, from which the main causes are identified as: (a) poor
light conditions and occlusion, particularly occlusion of the axles and top of the
vehicle; (b) class 2 is often misclassified due to the occluded caravan behind it,
which causes the vehicle be categorized as class 2 instead of 1; (c) subtle rules
in the class estimation, e.g., symbols on the vehicle that transports people with
special needs will be categorized as class 1 instead of 2 or 3. These difficulties
constitute additional challenges for the proposed method.

The above analyses indicate several weaknesses of the proposed method. Par-
ticularly, it exhibits most of the limitations for class 4 which is misclassified as
class 3. In future, these errors can be minimized by following several ways: (a)
increase training data by collecting more diverse samples, particularly for classes
3 and 4, and the special rules cases; (b) synthesize more data using data augmen-
tation approaches; (c) incorporate efficient pre-processor to tackle the difficult
lighting conditions; (d) enhance the efficiency of the classifier by incorporating
discriminative loss functions rather than the ordinary softmax loss; and (e) in-
corporate deeper CNN models. Besides enhancing the efficiency, the proposed
method can be evaluated on a variety of similar vehicle classification tasks from
different contexts. Moreover, it will be evaluated on the existing car classification
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Fig. 6: Illustration of the misclassified vehicle classes. Within each parentheses
(t, p), the first value t indicates the true class label and the second value p means
the predicted class label.

datasets [32,17] where the objectives are much different compared to the given
ATC based classification.

5 Conclusion

In this paper we proposed a novel vehicle classification method for ATC, which
is currently accomplished with several OS and human operators. The proposal
consists of a novel multi-classifier fusion-based method, which combines the clas-
sification decisions from the OS and the class probabilities estimated from the
camera image using two CNN models.

The proposed method significantly outperforms the performance of the ex-
isting deployed system by increasing the accuracy from 52.77% to 99.03%.

Additionally, it outperforms several alternative state-of-the-art CNN based
methods, which could be used for the ATC task.

Obtained results indicate that the proposed approach can be adapted to a
large number of vehicle classification problem where the classification decision
can be made by fusing the outputs from multiple classifiers. The extensive experi-
ments, analysis and discussions provided in this paper indicate several interesting
perspectives and challenges for the future work.
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Leveraging the potential of social platform monitoring Since years, the
war for talent is a phenomenon that keeps companies busy: highly skilled employ-
ees have become a scarce resource, especially as the COVID pandemic has fueled
growth of e(lectronic)-commerce and q(uick)-commerce providers. On top, social
platforms such as indeed, glassdoor or kununu have increased the transparency
in the labor market. Employees share their experiences concerning an employer
across all stages of the employee life-cycle, which is comparable to the customer
life-cycle that is evaluated on platforms such as google, trustpilot, twitter and
the likes. While customers and employees profit from sharing experiences, of
course also companies can derive substantial benefit from social platforms for
target-oriented performance optimization. In this paper, we transfer previous
work of monitoring twitter feeds related to the German Federal Election by
means of a sophisticated dashboard into the business context. The core idea is
to monitor companies’ reputation and appearance on social platforms, which
are used by employees for sharing their work experiences and satisfaction level
(employee perspective). This will be combined with analyses of the companies’
profile on general social media platforms such as twitter via stream-mining based
topic modeling and sentiment analysis. This integrated approach, currently at a
proof-of-concept stage, allows for simultaneously monitoring the customer and
employee perspective in order to derive recommended actions for optimizing the
organization’s processes and services. A sophisticated and interactive dashboard
will contain informative metrics, statistics, and visualizations from a variety of
relevant social platforms and will be filled in an automated, data stream based
fashion. As a case-study, we focus on the company flaschenpost SE.

Data. Internal surveys are conducted regularly to evaluate the employees’
satisfaction. On top, social media channels and employer rating portals are ana-
lyzed. For labor marketing, the company is active on channels such as LinkedIn
and Xing. Due to the geographic focus on Germany the portals kununu, glass-
door, stepstone, indeed contain relevant data to be analyzed. In addition to
quantitative data such as satisfaction indicators based on scales, the platforms
also offer qualitative data in the form of comments on various issues. In open
text fields, specific textual assessments can be made on aspects of the company,
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interaction with employees, the working atmosphere, and job requirements. Data
of social media platforms such as twitter are not collected at this point in time.

Analytics process. External impact is assessed via quantitative metrics of
employer rating portals. Textual data is analysed manually, which is gained from
the employer rating portals as well as internal employee surveys and general (so-
cial) media. The data available from the above mentioned channels are reviewed
daily by an expert of the HR department. On a weekly basis, the manager in
charge shares new insights with the respective regional and functional leader.
Also, the expert reacts on social media entries.

Related Approaches from Political Social Media Analytics Although
the discovery and evaluation of political topics and contexts in social networks
primarily aims at identifying manipulative behavior by (possibly) automated
or malicious actors [6, 5], the collection of data and identification of issues over
time is methodologically related. Access routes for data collection are similar, i.e.
platform APIs or crawlers to collect data are used. Also, similar (un)structured
data and at the same time analogous data protection requirements can be ex-
pected. The analytic approach can certainly also be transferred in many cases.
In particular, the data to be collected can be interpreted as a data stream in
which topics appear spontaneously and also disappear again [3]. The recogni-
tion of topics must therefore be working in near real-time and at the same time
be able to evaluate topic importance locally, i.e. depending on the time of ob-
servation. The detailed analysis of topics at different points in time plays a
central role downstream of the real-time analysis. It is precisely these aspects
that various methodological works in the field of political social media analyt-
ics focus on: text-based stream clustering techniques [3, 1], two-stage analytics
frameworks [2], and their use in the context of monitoring political elections. In
this context, the use of a text clustering method for real-time topic discovery
and the construction of an information dashboard for the 2021 German fed-
eral election are worth highlighting. The dashboard integrated the respective
two-phase analytics methodology of real-time topic discovery and downstream
detailed analysis to give citizens a transparent picture of the situation regarding
election-related topics [2].

A Dashboard for Monitoring Employee and Customer Satisfaction on
Social Platforms Within Figure 1, the concept of the interactive dashboard
is depicted. The initial idea is, that data is collected via crawlers or specific
exports from e.g. kununu, indeed or twitter. All collected information is stored
in an automated fashion within a document comprised data base. Extracted
textual data is further analyzed via natural language processing techniques like
sentiment analysis. Via a stream clustering approach, discussed topics at differ-
ent points in time, are extracted and fed into the database again. The storage
and initial analysis are done in real-time, so further analytical steps can be ap-
plied directly via the interactive dashboard. To enable a structured and detailed
view on the data, a mapping layer in terms of an Online Analytical Processing
(OLAP) Cube is applied [4]. The mapping combines different data records with
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analysis dimensions like time, scores, employee groups, etc. Also, the extracted
topics of the stream clustering approach form a dimension of the data matrix.
A stakeholder is thus able to use OLAP operations like slicing, dicing or drill
downs via the interactive dashboard which shows meaningful metrics, statistics
and visualizations derived from the mapping of the OLAP cube. Stakeholder
specific exports can be extracted as basis for action recommendations within the
organization. Also, an important merit is the possibility to conduct comparisons
to business competitors in the market. From the methods perspective, textual
data stream clustering algorithms will be further developed and explainability
of automated AI tools on semi-structured data will be addressed.

Fig. 1. Concept of interactive dashboard for monitoring social platforms.
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Abstract. One of the most important and recurring issues that the
development of a software product faces is the requirements selection
problem. Addressing this issue is especially crucial if agile methodologies
are used. The requirements selection problem, also called Next Release
Problem (NRP), seeks to choose a subset of requirements which will be
implemented in the next increment of the product. They must maxi-
mize clients satisfaction and minimize the cost or effort of implementa-
tion. This is a combinatorial optimization problem studied in the area of
Search-Based Software Engineering. In this work, the performance of a
basic genetic algorithm and a widely used multi-objective genetic algo-
rithm (NSGA-II) have been compared against a multi-objective version
of a randomized greedy algorithm (GRASP). The results obtained show
that, while NSGA-II is frequently used to solve this problem, faster al-
gorithms, such as GRASP, can return solutions of similar or even better
quality using the proper configurations and search techniques. The repos-
itory with the code and analysis used in this study is made available to
those interested via GitHub.

Keywords: grasp · multi-objective optimization · next release problem
· requirements selection · search-based software engineering.

1 Introduction

Software systems are increasing in functionality and complexity over time. This
implies that new software projects are potentially more complicated to man-
age and complete successfully. One of the problematics that can heavily affect
the outcome of a project is the planning of a release. In a software project,
the product to be delivered is defined by a set of software requirements. These
requirements are offered to a group of clients, who will give feedback on which
requirements are more important to them. Then, a set of requirements is planned
for the release. Selecting the requirements that better fit client interests starts
getting complicated when development capacity has to be taken into account.

? This work has been partially funded by the Regional Government (JCCM) and
ERDF funds through the project SBPLY/17/180501/000493.
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Furthermore, requirements can have dependencies between them. This problem,
named requirements selection problem, is very complex and does not have a
unique and optimal solution. Two objectives coexist: maximizing the satisfac-
tion of the clients and minimizing the effort of the software developers. Therefore,
solutions can range from sets of few requirements with minimal effort and satis-
faction, to sets of plenty of requirements, which will imply high client satisfaction
but at the cost of a high effort.

Thus, this planning step is critical, especially when applying incremental
software development methodologies due to the need to solve the requirements
selection problem multiple times, at each iteration. Thus, this problem is candi-
date to be automated by means of optimization methods. Previous works have
studied the applicability of different search techniques, giving preference to evo-
lutionary algorithms, mainly. In our study, we present an algorithm based on the
Greedy Randomized Adaptive Search Procedure (GRASP, [7]). We have explored
new procedures that allow to improve GRASP performance in the requirements
selection problem beyond that of previous studies. The experimentation that we
carried out shows that the GRASP metaheuristic can obtain similar results as
those of the evolutionary approaches, but reducing drastically its computational
cost.

The rest of the paper is structured as follows. In Section 2, a summary
of previous works and procedures they applied is made. Section 3 describes
our algorithm proposal and defines the solution encoding along with the most
important methods and techniques. Then, in Section 4, the evaluation setup is
described, along with the algorithms, datasets and methodology used. Section
5 presents and discusses the results of the experimentation. Finally, Section 6
summarizes the conclusions of this study and introduces potential new lines of
work for the future.

2 Requirements selection

2.1 Related work

The requirements selection problem is studied in the Search-Based Software En-
gineering (SBSE) research field, where Software Engineering related problems
are tackled by means of search-based optimization algorithms. The first defi-
nition of the requirements selection problem was formulated by Bagnall et al.
[1]. In their definition of the Next Release Problem (NRP), a subset of require-
ments has to be selected, having as goal meeting the clients1 needs, minimizing
development effort and maximizing clients satisfaction. In their work, differ-
ent metaheuristics algorithms, such as simulated annealing, hill climbing and
GRASP algorithms were proposed, but all of them combined the objectives of
the problem using an aggregate function. The same procedure of single-objective
proposals was followed by Greer and Ruhe [9]. They studied the generation of

1 Although ”stakeholder” is a more appropriate term, ”client” will be used to keep
coherence with previous works present in the literature.
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feasible assignments of requirements to increments, taking into account different
resources constraints and stakeholders perspectives. Genetic algorithms (GAs)
were the optimization technique selected to solve the NRP. Later, Baker et al.
[2] demonstrated that metaheuristics techniques could be applied to real-world
NRP outperforming expert judgement, using in their study simmulated anneal-
ing and greedy algorithms. The works of del Sagrado et al. [5] applied ACO
(Ant Colony Optimization). All of these approaches followed a single-objective
formulation of the problem, in which the aggregation of the objectives resulted
in a biased search.

It was not until the proposal of Zhang et al. [13] that the NRP was formu-
lated as a multi-objective optimization (MOO) problem. This new formulation,
Multi-Objective Next Release Problem (MONRP), formally defined in Section
2.2, was based on Pareto dominance. Their proposal tackled each objective sep-
arately, exploring the non-dominated solutions. Finkelstein et al. [8] also applied
multi-objective optimization considering different measures of fairness. All these
studies applied evolutionary algorithms, such as ParetoGA and NSGA-II [4] to
solve the MONRP.

Other works that kept exploring evolutionary algorithms to solve the MONRP
are those of Durillo et al. [6]. They proposed two GAs, NSGA-II and MO-
Cell (MultiObjective Cellular genetic algorithm), and an evolutionary procedure,
PAES (Pareto Archived Evolution Strategy).

2.2 Multi-objective formulation

As mentioned in the introduction, the NRP requires a combinatorial optimiza-
tion of two objectives. While some studies alleviate this problem by adding an
aggregate (single-objective optimization), others tackle the two objectives by us-
ing a Pareto front of non-dominated solutions (MOO). Defining the NRP as a
multi-objective optimization problem gives the advantage that a single solution
to the problem is not sought, but rather a set of non-dominated solutions. In
this way, one solution or another from this set can be chosen according to the
conditions, situation and restrictions of the software product development. This
new formulation of the problem is known as MONRP.

The MONRP can be defined by a set R = {r1, r2, . . . , rn} of n candidate
software requirements, which are suggested by a set C = {c1, c2, . . . , cm} of m
clients. In addition, a vector of costs or efforts is defined for the requirements in
R, denoted E = {e1, e2, . . . , en}, in which each ei is associated with a requirement
ri . Each client has an associated weight, which measures its importance. Let
W = {w1, w2, . . . , wm} be the set of client weights. Moreover, each client gives
an importance value to each requirement, depending on the needs and goals
that this has with respect to the software product being developed. Thus, the
importance that a requirement rj has for a client ci is given by a value vij , in
which a zero value represents that the client ci does not have any interest in
the implementation of the requirement rj . A m × n matrix is used to hold all
the importance values in vij . The overall satisfaction provided by a requirement
rj is denoted as S = {s1, s2, . . . , sn} and is measured as a weighted sum of
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all importance values for all clients. The MONRP consists of finding a decision
vector X, that includes the requirements to be implemented for the next software
release. X is a subset of R, which contains the requirements that maximize clients
satisfaction and minimize development efforts.

3 Proposal

Evolutionary algorithms have been widely applied to solve the MONRP [3,11,13].
Most of the previous studies are based on algorithms such as NSGA-II, ParetoGA
or ACO, usually comparing their performance with other algorithms less suited
to the problem, e.g. generic versions of genetic or greedy algorithms. However,
evolutionary approaches involve a high computational cost, as the algorithms
have to generate a population of solutions and evolve each one of the solutions
applying many operators and fitness evaluations. For this reason, in this work
we have pursued to design an algorithm that can return a set of solutions of
similar quality to those obtained by the evolutionary proposals, but reducing
the cost of its computation. In this section, it is presented the multi-objective
version of a greedy algorithm, along with the solution encoding used. Then, the
most relevant procedures of the algorithm and enhancements are presented.

3.1 GPPR: a GRASP algorithm with Pareto front and Path
Relinking

GRASP is a multi-start method designed to solve hard combinatorial optimiza-
tion problems, such as the MONRP. It has been used in its simplest version
[11,3] to solve the requirements selection problem.

The basic actions of a canonical GRASP procedure consist of generating
solutions iteratively in two phases: a greedy randomized construction and an
improvement by local search (see Sections 3.3 and 3.4). These two phases have
to be implemented specifically depending on the problem at hand.

We have designed a variant of the GRASP procedure with the goal of solv-
ing the MONRP in a hybrid manner, that is, applying both single-objective and
multi-objective search methods. The algorithm, named GRASP algorithm with
Pareto front and Path Relinking (GPPR), executes a fixed number of iterations,
generating at each iteration a set of solutions, instead of only one solution per it-
eration (which is a different approach from the canonical GRASP that generates
one solution per iteration, but in the end works identically). Additionally, we
have extended the procedure, updating the Pareto front with the new solutions
found after each iteration, and adding a post-improvement procedure known as
Path Relinking (see Section 3.5), that will enhance the quality of the Pareto
front found by exploring trajectories that lead to new non-dominated solutions.
The pseudocode of GPPR is shown in Algorithm 1.

Each one of the operators included in the pseudocode is described in detail
in Sections 3.3, 3.4 and 3.5, respectively. As explained previously, GPPR is an
algorithm that applies a hybrid approach. It maintains and updates at each
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Algorithm 1 GPPR pseudocode

procedure GPPR(maxIterations)
nds← ∅ . empty set of non-dominated solutions
for i = 0 to maxIterations do

solutions← constructSolutions()
solutions← localSearch(solutions)
solutions← pathRelinking(solutions, nds)
nds← updateNDS(solutions)

end for
return nds

end procedure

iteration a set of non-dominated solutions, returned in the form of a Pareto
front at the end of the search. However, it uses an aggregate of the two problem
objectives in some phases of the execution (depending on the methods chosen
for each phase).

3.2 Solution encoding

Each candidate solution in GPPR is represented by a vector of booleans of length
n. Each value of the vector indicates the inclusion or not of a requirement of
the set R (see Section 2.2). The satisfaction and effort of each requirement are
scaled using a min-max normalization. Each solution is evaluated by means of
a singleScore value that mixes the scaled satisfaction and effort of the set X of
selected requirements in the solution. In this version of the GPPR, we did not
model cost restrictions nor interactions between requirements.

3.3 Construction

In this phase a number of solutions are constructed. Their generation can be
either randomized or stochastic. We have designed two methods for the con-
struction phase:

– Uniform. First, the number x of selected requirements is randomly chosen.
Then, x requirements are selected randomly, having each requirement r of
the set R of length n a probability 1

n of being selected. This construction
method works as a random selection of requirements.

– Stochastic. The probability of each requirement being selected is propor-
tional to its singleScore.

3.4 Local search

This phase is executed after the construction of an initial set of solutions, and
it aims to find solutions in the neighbourhood that enhance the former ones.
Since GPPR aims to generate solutions fast, it performs a ranking-based forward
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search, in which it tries to find and return a neighbour that is better than the
initial one. This search method tends to fall into local optima, but it can be
corrected increasing the number of executions or applying extra operators after
this phase (see Subsection 3.5).

3.5 Path Relinking

One of the adverse characteristics of GRASP is its lack of memory structures. It-
erations in GRASP are independent and do not use previous observations. Path
Relinking (PR) is a possible solution to address this issue. PR was originally
proposed as a way to explore trajectories between elite solutions. In the problem
being tackled, elite solutions are the non-dominated solutions. Using one or more
elite solutions, trajectories that lead to other elite solutions in the search space
are explored, in order to find better solutions. PR applied to GRASP was intro-
duced by Laguna and Mart́ı [10]. It has been used as an intensification scheme,
in which the generated solutions of an iteration are relinked to one or more elite
solutions, creating a post-optimization phase.

The PR method can be applied either after each iteration, involving a higher
computational cost; or at the end of the execution, relinking only the final elite
solutions, reducing the effectiveness of this method but speeding up the execu-
tion.

In this proposal we have decided to apply PR at each iteration as a third
phase, after the local search. The pseudocode is described in Algorithm 2. For
each one of the solutions found after the local search, this procedure will try
to find a path from each solution to a random elite solution from the set of
non-dominated solutions (NDS). This path will help the procedure to find in-
termediate solutions that can possibly be better than the former ones. For this
purpose, each solution in the current set of solutions obtained after the local
search is assigned an elite solution from the current NDS. Then, it calculates the
Hamming distance of these two solutions. Having the distance value, the proce-
dure finds the bits that are different, that is, the requirements included in one
solution that are not in the other. Then, it updates the current solution (flips the
bit that returns the highest singleScore value) and saves the new path solution
in a solution path list, decrementing the distance from the current solution to
the elite one. When the distance is zero, the best solution found in the path
is appended to a set of best solutions (bestSols in Algorithm 2) found by the
PR procedure. After finding best path solutions for all the initial solutions, the
procedure returns the set of former solutions plus the new solutions found.

4 Evaluation setup

In this section, we present the experimental evaluation. We describe competing
approaches used to be compared against our proposal, along with the datasets
used to evaluate the algorithms. Our algorithms have been implemented in
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Algorithm 2 Path Relinking pseudocode

procedure PathRelinking(solutions, nds)
bestSols← ∅
for sol in solutions do

currSol← sol . Create a copy to be modified
eliteSol← getRandomSol(nds)
distance← countDistance(currSol, eliteSol)
pathSols← ∅
while distance > 0 do

diffBits← findDiffBits(currSol, eliteSol)
currSol← flipBestBitSingleScore(diffBits)
pathSols← savePath(currSol)
distance← distance− 1

end while
bestSols← bestSols ∪ findBestSol(pathSols)

end for
return solutions ∪ bestSols

end procedure

Python 3.8.8. The source code, experimentation setup and datasets are avail-
able at the following repository: https://github.com/UCLM-SIMD/MONRP/
tree/ola22.

4.1 Algorithms

To properly compare the effectivity and performance of our proposal, besides
GPPR we have included in our experiments the following algorithms: Random
search, Single-Objective GA and NSGA-II. The ranges of parameters used in
the experimentation for each algorithm are described in Section 4.3, along with
their descriptions.

4.2 Datasets

We have tested the performance of the algorithms using a variety of datasets
from different sources. Datasets P1 [9] and P2 [11] include 5 clients and 20
requirements, and 5 clients and 100 requirements, respectively.

Due to the privacy policies followed by software development companies,
there is a lack of datasets to experiment with. For this reason, we have created
synthetically a larger dataset (S3) that includes 100 clients and 140 requirements,
in order to evaluate the shift in performance of the algorithms.

4.3 Methodology

We tested a set of configurations for each algorithm and dataset. Each con-
figuration was executed 10 times. For the Single-Objective GA and NSGA-II,
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8 Pérez-Piqueras et al.

populations were given values among {20, 30, 40, 100, 200} and number of gener-
ations took values {100, 200, 300, 500, 1000, 2000}. Crossover probabilities range
from {0.6, 0.8, 0.85, 0.9}. Two mutation schemes were used, flip1bit and flipeach-
bit, and mutation probabilites from {0, 0.05, 0.1, 0.2, 0.5, 0.7, 1}. Both algorithms
used a binary tournament selection and a one-point crossover scheme. For the re-
placement scheme, both Single-Objective GA and NSGA-II applied elitism. The
total amount of different hyperparameter configurations executed for each GA
and each dataset was 1680. Our GPPR algorithm was tested using a number of
iterations from {20, 40, 60, 80, 100, 200, 500} and a number of solutions per itera-
tion from {20, 50, 100, 200, 300, 500}. We tested all combinations of construction
methods, local search and PR (including configurations with no local search and
no PR methods), which resulted in 1008 different hyperparameter configurations
executed for each dataset.

The stop criterion used in other works [13,11,3] is the number of function
evaluations, commonly set to 10000. To adapt our experiments to this stop cri-
terion, we restricted the execution of our GAs to: Pop. size×#Gens. ≤ 10000;
and for the GPPR: Iterations× Sols. per Iteration ≤ 10000.

The GPPR normalizes the satisfaction and effort values, scaling them be-
tween 0 and 1. To properly compare its Pareto front solutions against those
returned by the GAs, these evolutionary approaches have also used the nor-
malized version of the dataset values. To evaluate the results, we compared the
obtained Pareto fronts and a set of quality indicators of the results generated by
the algorithms and their efficiency:

– Hypervolume (HV). Denotes the space covered by the set of non-dominated
solutions [14]. Pareto fronts with higher HV are preferred.

– ∆-Spread. It measures the extent of spread achieved among the obtained
solutions [6]. Pareto fronts with lower ∆-Spread are preferred.

– Spacing. It measures the uniformity of the distribution of non-dominated
solutions [12]. Pareto fronts with greater spacing are preferred.

– Execution time. The total time taken by the algorithm to finish its exe-
cution. Algorithms with lower execution time are preferred.

Mean values of these metrics have been calculated and compared in a pair-
wised manner between algorithms using the Wilcoxon rank-sum non-parametric
test, which allows to assess whether one of two samples of independent observa-
tions tends to have larger values than the other.

5 Results and analysis

5.1 Best configurations

The Single-Objective GA’s best hyperparameter configuration includes a popu-
lation size of 100 individuals, a number of generations of 100 (maximum number
to stay under the 10,000 limit) and a Pc = 0.8. The mutation operator that
showed a better performance was the flip1bit. This operator gives a chance of
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Fig. 1. Pareto front for dataset P1 Fig. 2. Pareto front for dataset P2

Fig. 3. Pareto front for dataset S3

flipping only one bit of the booleans vector. The best-performing probability is
Pm = 1, which means that we always mutates one random bit of each individual.
That probability is equivalent to using Pm = 1

n at gene level, n being the number
of genes (scheme used in [6,11]). The best hyperparameter configuration for the
NSGA-II used a population size of 100 individuals and 100 generations. The best
crossover probability (Pc) was the lowest, 0.6, and the best mutation operator
was the flip1bit, using a Pm = 1. For the GPPR, the ratio between iterations and
number of solutions per iteration is less important, as this algorithm does not
have memory. Thus, a similar hyperparameter configuration to those of the GAs
was used. The construction method that showed a better performance was the
stochastic one, giving preference to requirements with higher singleScore. In all
scenarios, hyperparameter configurations with uniform construction performed
worse.

5.2 Pareto results

Pareto results are shown in Figures 1, 2 and 3. For the sake of space, we omit
results of worst-performing hyperparameter configurations.

The Single-Objective GA shows bad performance, being similar to that of
the random procedure. This occurs due to the low number of generations set
to keep the maximum number of function evaluations. Configuring a number of
generations of one or two magnitude orders higher increases the quality of its
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Pareto front. Regarding the Pareto front distribution, this GA’s aggregation of
objectives biases the search, leaving unexplored areas.

The NSGA-II algorithm generates Pareto fronts of better quality: better
solutions and more distributed along the search space. As expected, the crowding
operator of the algorithm helps exploring the search space. However, as the
dataset size increases, its performance decreases significantly. The reason is the
limited number of generations, as this algorithm is expected to perform better
in larger datasets when compared against other search methods.

Multi-Objective (MO) local search methods do not worsen the solutions, but
do not improve them either, as a GPPR without local search is returning similar
Pareto fronts. This implies that local search methods that can only explore the
neighbourhood of a solution are not able to improve the solutions. Nevertheless,
the PR procedure is capable of finding better solutions. In all cases, algorithms
applying this methods returned Pareto fronts of higher quality. Regarding the
Pareto distribution, as this procedure starts each iteration randomly, it explores
the majority of the search space. The most interesting feature of the GPPR is
that, while the dataset size grows, its performance is not demeaned. Therefore,
unless the search space is much larger, our GPPR proposal can return a Pareto
front of acceptable quality very efficiently, while GAs require higher number of
iterations, impplying a less affordable computational cost.

5.3 Metrics results

The mean values of the metrics obtained for each algorithm and dataset after
10 independent runs have been statistically compared, as explained in Section
4.3. Each metric mean value has been compared pair-wise between algorithms,
denoting the best value in bold and indicating the values that are statistically
worse (P < 0.05) with a ↓ symbol (see Table 1).

Regarding the HV metric, our GPPR algorithm has obtained significantly
better results than the two GAs in datasets P2 and S3, and worse results for
dataset P1, whose search space is very small. These results only denote that the
extreme solutions of the Pareto front returned by GPPR cover a larger area than
those obtained by the GAs.

The ∆-Spread values show that the Single-Objective GA obtains the lowest
values, that is, the best ∆-Spread values. Nevertheless, our GPPR proposal
obtains values lower than those of the NSGA-II, outperforming it once again.

The spacing values show that, again, the GPPR outperforms the two GAs in
the two larger datasets.Comparing the spacing values of the smallest dataset, P1,
it is observed that GPPR spacing values decrease, being close to those obtained
by the NSGA-II algorithm. However, in datasets P2 and S3, the GPPR spacing
values are significantly greater.

Finally, for the execution time, it is important to consider that comparison
between our experiments and those made by other studies is only possible if the
same software and hardware requirements are met. Otherwise, only the differ-
ence in execution time between algorithms of the same study can be analyzed.
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The fastest algorithm is the Single-Objective GA, due to the lightweight meth-
ods and few generations that it had executed. The NSGA-II obtained the worst
values, because of the additional steps executed at each iteration, and despite
implementing a fast-sorting method. When compared against our GPPR pro-
posal, the difference is significant, being the NSGA-II almost ten times slower for
the smallest dataset (P1), and fairly slower for larger datasets. It is interesting
to highlight that, as dataset size grows, the difference between the NSGA-II and
our GPPR proposal decreases. However, MONRP instances are not expected to
have a scale large enough that the NSGA-II could outperform our GPPR. There-
fore, these values demonstrate that our proposal can be applied satisfactorily to
MONRP reducing drastically computational cost.

Table 1. Average metrics of the best configurations for each dataset

Dataset Algorithm HV ∆-Spread Spacing Exec. time (s)

P1
Single-Objective GA 0.594↓ 0.615 0.323↓ 17.967
NSGA-II 1.0 0.963↓ 0.382 180.991↓
GPPR 0.909↓ 0.644 0.371↓ 18.102

P2
Single-Objective GA 0.157↓ 0.637 0.128↓ 82.713
NSGA-II 0.407↓ 0.969↓ 0.245↓ 616.415↓
GPPR 0.973 0.688↓ 0.300 250.841↓

S3
Single-Objective GA 0.102↓ 0.720 0.105↓ 125.702
NSGA-II 0.286↓ 0.970↓ 0.206↓ 859.928↓
GPPR 0.977 0.711 0.293 488.045↓

6 Conclusions and future work

In this paper, we have studied the applicability of a greedy procedure (GPPR)
into a multi-objective problem of the Software Engineering field. The MONRP
has been tackled previously using, mainly, evolutionary approaches. Few pro-
posals have used GRASP-based methods, usually applying basic instances of
it. Our proposal aimed to design a method capable of generating solutions of
similar quality than those of the evolutive approaches, but reducing drastically
the computational cost. We have explored different combinations of construc-
tion and local search methods, and applied post-construction techniques, such
as PR, to improve the solutions found. To evaluate our proposal and compare
it against classic methods, we have designed an experimentation framework, in
which we have used two real-world datasets and created a new one synthetically,
setting a rigorous experiment. The comparison have been carried out using a
set of quality metrics and comparing the Pareto fronts, obtaining quite good
results and showing that our GPPR proposal can outperform more classical and
popular methods, in both performance and Pareto front results. Moreover, the
code of the algorithms and experiments has been published to be shared by the
scientific community.
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In future lines of work, we will explore other approaches to the MONRP. It
would also be interesting to try combining our GPPR with a post-optimization
phase using an evolutive algorithm capable of enhance former solutions. Addi-
tionally, it could be interesting to implement interactions between requirements,
which is of interest when projects use long-term planning.
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Abstract. The performance of any Machine Learning algorithm is im-
pacted by the choice of its hyperparameters. As training and evaluating
a ML algorithm is usually expensive, the hyperparameter optimization
(HPO) method needs to be computationally efficient to be useful in prac-
tice. Most of the existing approaches on multi-objective HPO use evo-
lutionary strategies and metamodel-based optimization. However, few
methods account for uncertainty in the performance measurements. This
paper presents results on multi-objective HPO with uncertainty on the
performance evaluations of the ML algorithms. We combine the sampling
strategy of Tree-structured Parzen Estimators (TPE) with the meta-
model obtained after training a Gaussian Process Regression (GPR) with
heterogeneous noise. Experimental results on three analytical test func-
tions and three ML problems show the improvement in the hypervolume
obtained, when compared with HPO using stand-alone multi-objective
TPE and GPR.

Keywords: hyperparameter optimization · multi-objective optimization
· Bayesian optimization · uncertainty

1 Introduction

In Machine Learning (ML), an hyperparameter is a parameter that needs to
be specified before training the algorithm: it influences the learning process,
but it is not optimized as part of the training algorithm. The time needed to
train a ML algorithm with a given hyperparameter configuration on a given
dataset may already be substantial, particularly for moderate to large datasets,
so the HPO algorithm should be as efficient as possible in detecting the optimal
hyperparameter setting.

Many of the current algorithms in the literature focus on optimizing a single
(often error-based) objective [2, 13, 10]. In practical applications, however, it is
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often required to consider the trade-off between two or more objectives, such
as the error-based performance of a model and its resource consumption [7], or
objectives relating to different types of error-based performance measures [5].
The goal in multi-objective HPO is to obtain the Pareto-optimal solutions, i.e.,
those hyperparameter values for which none of the performance measures can
be improved without negatively affecting any other.

In the literature, most HPO approaches take a deterministic perspective us-
ing the mean value of the performance observed in subsets of data (cross valida-
tion protocol). However, depending on the chosen sets, the outcome may differ:
a single HP configuration may thus yield different results for each performance
objective, implying that the objective contains uncertainty (hereafter referred to
as noise). We conjecture that a HPO approach that considers this uncertainty
will outperform alternative approaches that assume the relationships to be de-
terministic. Stochastic algorithms (such as [3, 4]) can potentially be useful for
problems with heterogeneous noise (the noise level varies from one setting to an-
other). To the best of our knowledge, such approaches have not yet been studied
in the context of HPO optimization. The main contributions of our approach
include:

– Multi-objective optimization using a Gaussian Process Regression (GPR)
surrogate that explicitly accounts for the heterogeneous noise observed in
the performance of the ML algorithm.

– The selection of infill points according to the sampling strategy of multi-
objective TPE (MOTPE), and the maximization of an infill criterion. This
method allows sequential selection of hyperparameter configurations that are
likely to be non-dominated, and that yield the largest expected improvement
in the Pareto front.

The remainder of this article is organized as follows. Section 2 discusses
the basics of GPR and MOTPE. Section 3 presents the algorithm. Section 4
describes the experimental setting designed to evaluate the proposed algorithm,
and Section 5 shows the results. Finally, Section 6 summarizes the findings and
highlights some future research directions.

2 GPR and TPE: Basics

Gaussian Process Regression (GPR) (also referred to as kriging, [14]) is com-
monly used to model an unknown target function. The function value predic-
tion at an unsampled point x(∗) is obtained through the conditional probability
P (f(x(∗))|X,Y) that represents how likely the response f(x(∗)) is, given that we
observed the target function at n input locations x(i), i = 1, . . . , n (contained in
matrix X), yielding function values y(i), i = 1, . . . , n (contained in matrix Y)
that may or may not be affected by noise. Ankenman et al. [1] provides a GPR
model (referred to as stochastic kriging) that takes into account the heteroge-
neous noise observed in the data, and models the observed response value in the
r -th replication at design point x(i) as:
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fr(x
(i)) = m(x(i)) +M(x(i)) + ϵr(x

(i)) (1)

where m(x) represents the mean of the process, M(x) is a realization of a Gaus-
sian random field with mean zero (also referred to as the extrinsic uncertainty
[1]), and ϵr(x

(i)) is the intrinsic uncertainty observed in replication r. Popular
choices for m(x) are m(x) =

∑
h βhfh(x) (where the fh(x) are known linear or

nonlinear functions of x, and the βh are unknown coefficients to be estimated),
m(x) = β0 (an unknown constant to be estimated), or m(x) = 0. M(x) can be
seen as a function, randomly sampled from a space of functions that, by assump-
tion, exhibit spatial correlation according to a covariance function (also referred
to as kernel).

Whereas GPR models the probability distribution of f(x) given a set of
observed points (P (f(x)|X,Y)), TPE tries to model the probability of sampling
a point that is directly associated to the set of observed responses (P (x|X,Y))
[2]. TPE defines P (x|X,Y) using two densities:

P (x|X,Y) =

{
l(x) if f(x) < y∗,x ∈ X
g(x) o.w

(2)

where l(x) is the density estimated using the points x(i) for which f(x(i)) < y∗,
and g(x) is the density estimated using the remaining points. The value y∗

is a user-defined quantile γ (splitting parameter of Algorithm 1 in [11]) of the
observed f(x) values, so that P (f(x) < y∗) = γ. Here, we can see l as the density
of the hyperparameter configurations that may have the best response. A multi-
objective implementation of TPE (MOTPE) was proposed by [11]; this multi-
objective version splits the known observations according to their nondomination
rank. Contrary to GPR, neither TPE nor MOTPE provide an estimator of the
response at unobserved hyperparameter configurations.

3 Proposed algorithm

The algorithm (Figure 1) starts by evaluating an initial set of hyperparameter
vectors through a Latin hypercube sample; simulation replications are used to
estimate the objective values at these points. We then perform two processes
in parallel. On the one hand, we use the augmented Tchebycheff scalarization
function [9] (with a random combination of weights) to transform the multiple
objectives into a single objective using these training data. Throughout this
article, we will assume that the individual objectives need to be minimized;
hence, the resulting scalarized objective function also needs to be minimized.
We then train a (single) stochastic GPR metamodel on these scalarized objective
function outcomes; the replication outcomes are used to compute the variance
of this scalarized objective.

At the same time, we perform the splitting process used by [11] to divide
the hyperparameter vectors into two subsets (those yielding “good” and “poor”
observations) to estimate the densities l(x) and g(x) for each separate input
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Fig. 1: Proposed multi-objective HPO using GPR with heterogeneous noise and
TPE to sample the search space

dimension (Eq. 2). To that end, our approach uses a greedy selection according
to the nondomination rank of the observations, and controlled by the parameter
γ 5. The strategy thus preferably selects the HP configurations with highest
nondomination rank to enter in the ”good” subset.

Using the densities l(x), we randomly select a candidate set of nc configu-
rations for each input dimension. These individual values are sorted according

to their log-likelihood ratio log l(x)
g(x) , such that the higher this score, the larger

the probability that the input value is sampled under l(xi) (and/or the lower
the probability under g(xi)). Instead of selecting the single configuration with
highest score on each dimension (as in [2, 11]), we compute the aggregated score

AS(x) =
∑d

i=1 log
l(xi)
g(xi)

for each configuration, and select the one that maxi-

mizes the Modified Expected Improvement (MEI) [12] of the scalarized objective
function in the set of configurations Q with an aggregated score greater than
zero (see Eq. 3).

argmax
q∈Q

(Ẑmin−Ẑq)Φ(
Ẑmin − Ẑq

ŝq
)+ŝqϕ(

Ẑmin − Ẑq

ŝq
) , Q = {x |AS(x) > 0} (3)

where Ẑmin is the stochastic kriging prediction at xmin (i.e. the hyperpa-
rameter configuration with the lowest sample mean among the already known
configurations), ϕ(·) and Φ(·) are the standard normal density and standard

normal distribution function respectively, the Ẑq is the stochastic kriging pre-
diction at configuration q, and ŝq is the ordinary kriging standard deviation for
that configuration [15]. The search using MEI focuses on new points located in
promising regions (i.e., with low predicted responses; recall that we assume that

5 Notice that both in [11] and in our algorithm, the parameter γ represents a percent-
age of the known observations that may be considered as “good”.
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the scalarized objective need to be minimized), or in regions with high meta-
model uncertainty (i.e., where little is known yet about the objective function).
Consequently, the sampling behavior automatically trades off exploration and
exploitation of the configuration search space.

Once a new hyperparameter configuration has been selected as infill point,
the ML algorithm is trained on this configuration, yielding (again) noisy esti-
mates of the performance measures. Following this infill strategy, we choose that
configuration for which we expect the biggest improvement in the scalarized ob-
jective function, among the configurations that are likely to be non-dominated.

4 Numerical simulations

In this section, we evaluate the performance of the proposed algorithm for solv-
ing multi-objective optimization problems (GP MOTPE), comparing the results
with those that would be obtained by using GP modelling and MOTPE indi-
vidually. In a first experiment, we analyze the performance on three well-known
bi-objective problems (ZDT1, WFG4 and DTLZ7 with input dimension d = 5;
see [6]), to which we add artificial heterogeneous noise (as in [4]). More specifi-

cally, we obtain noisy observations f̃ jp (Xi) = fj(Xi)+ϵp(Xi), p = {1, . . . , r}, j =
{1, . . . ,m}, with ϵp(Xi) ∼ N (0, τj(Xi)). The standard deviation of the noise
(τj(X)) varies for each objective between 0.01 × Ωj and 0.5 × Ωj , where Ωj is
the range of objective j. In between these limits, τj(X) decreases linearly with
the objective value: τj(X) = aj(fj(X) + bj),∀j ∈ {1, . . . ,m}, where a and b are
the linear coefficients obtained from the noise range [8].

Table 1: Details of the ML datasets

Dataset ID Inst. (Feat.)

Balance-scale 997 625 (4)
Optdigits 980 5620 (64)
Stock 841 950 (9)
Pollen 871 6848 (5)
Sylvine 41146 5124 (20)
Wind 847 6574 (14)

Dataset ID Inst. (Feat.)

Delta ailerons 803 7129 (5)
Heart-statlog 53 270 (13)
Chscase vine2 814 468 (2)
Ilpd 41945 583 (10)
Bodyfat 778 252 (14)
Strikes 770 625 (6)

In a second experiment, we test the algorithm on a number of OpenML
datasets, shown in Table 1. We optimize five hyperparameters for a simple (one
hidden layer) Multi-Layer Perceptron (MLP), two for a support vector machine
(SVM), and five for a Decision Tree (DT) (see Appendix A). In each experiment,
the goal is to find the HPO configurations that minimize classification error while
simultaneously maximizing recall. In all experiments, we used 20% of the initial
dataset as test set, and the remainder for HPO. We apply stratified k-fold cross-
validation (k = 10) to evaluate each hyperparameter configuration.

We used a fixed, small number of iterations (100) as a stopping criterion
in all algorithms; this keeps optimization time low, and resembles real-world
optimization settings where limited resources (e.g., time) may exist. Table 2
summarizes the rest of the parameters used in the experiments.
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Table 2: Summary of the parameters for the experiments

Setting Problem GP MOTPE GP MOTPE
Initial design Analytical fcts LHS: 11d− 1

HPO Random sampling: 11d− 1
Replications Analytical fcts 50

HPO 10
Acquisition function MEI EITPE MEI
Acquisition function optimization PSO* Maximization on a candidate set
Number of candidates to sample - nc = 1000 , γ = 0.3
Kernel Gaussian - Gaussian
* PSO algorithm (Pyswarm library): swarm size = 300, max iterations = 1800,
cognitive parameter=0.5, social parameter=0.3, and inertia=0.9

5 Results

Figure 3 shows the evolution of the hypervolume indicator during the optimiza-
tion of the analytical test functions. The combined algorithm GP MOTPE yields
a big improvement over both GP and MOTPE algorithms for the ZDT1 and
DTLZ7 functions, reaching a superior hypervolume already after a small num-
ber of iterations. Results also show that for ZDT1 and DTLZ7, the standard
deviation on the final hypervolume obtained by GP and GP MOTPE is small,
which indicates that a Pareto front of similar quality is obtained regardless of
the initial design. MOTPE, by contrast, shows higher uncertainty in the hyper-
volume results at the end of the optimization. For the concave Pareto front of
WFG4, MOTPE provides the best results, while GP MOTPE still outperforms
GP.
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Fig. 2: Observed Pareto front (PF) obtained at the end of a single macroreplica-
tion, for the analytical test functions. The uncertainty of each solution is shown
by a shaded ellipse, and reflects the mean± std of the simulation replications.
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Table 3 shows the average rank of the optimization algorithms according to
the hypervolume indicator. The experiments did not highlight significant dif-
ferences between GP MOTPE, GP and MOTPE (p value = 0.565 > 0.05 for
the non-parametric Friedman test where H0 states that the mean hypervolume
of the solutions is equal). However, GP MOTPE has the lowest average rank
in the validation set, indicating that on average, the Pareto front obtained with
our algorithm tends to outperform those found by GP and MOTPE individually,
yielding a larger hypervolume.
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Fig. 3: Hypervolume evolution during the optimization of the analytical test
functions. Shaded area represents mean±std of 13 macro-replications. Captions
contain the reference point used to compute the hypervolume indicator

Once the Pareto-optimal set of HP configurations has been obtained on the
validation set, the ML algorithm (trained with those configurations) is evaluated
on the test set. The difference between the hypervolume values obtained from
the validation and test set can be used as a measure of reliability: in general,
one would prefer HP configurations that generate a similar hypervolume in the
test set. Figure 4 shows that the difference between both hypervolume values
is almost zero when GP MOTPE is used, for all ML algorithms. In general,
MOTPE and GP MOTPE have the smallest (almost identical) mean absolute
hypervolume difference (0.0444 and 0.0445 respectively), compared with that of
GP (0.051). However, GP MOTPE has the smallest standard deviation (0.054),
followed by MOTPE (0.066) and GP (0.067).

Table 3: Average rank (given by the hypervolume indicator) of each algorithm

Validation set Test set

GP MOTPE GP MOTPE GP MOTPE GP MOTPE

Avg. rank 2.125 1.9861 1.8889 2.1528 1.875 1.9722

It is somehow surprising that the combined GP MOTPE algorithm does not
always obtain an improvement over the individual MOTPE and GP algorithms.
By combining both approaches, we ensure that we select configurations that (1)
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Fig. 4: Hypervolume generated by the HP configurations found using the valida-
tions set (V) and then evaluated with the test set (T)

have high probability to be nondominated (according to the candidate selection
strategy), and (2) has the highest MEI value for the scalarized objective. In
the individual GP algorithm, (1) is neglected, which increases the probability of
sampling a non-Pareto optimal point, especially at the start of the algorithm. In
the original MOTPE algorithm, (2) is neglected, which may cause the algorithm
to focus too much on exploitation, which increases the probability of ending up in
a local optimum. We suspect that the MOTPE approach for selecting candidate
points may actually be too restrictive: it will favor candidate points close to
already sampled locations, inherently limiting the exploration opportunities the
algorithm still has when optimizing MEI.

6 Concluding remarks

In this paper, we proposed a new algorithm (GP MOTPE) for multi-objective
HPO of ML algorithms. This algorithm combines the predictor information (both
predictor and predictor variance) obtained from a GPR model with heterogenous
noise, and the sampling strategy performed by Multi-objective Tree-structured
Parzen Estimators (MOTPE). In this way, the algorithm should select new points
that are likely to be non-dominated, and that are expected to cause the maximum
improvement in the scalarized objective function.

The experiments conducted report that our approach performed relatively
well for the analytical test functions of study. It appears to outperform the
pure GP algorithm in all analytical instances; yet, it does not always outper-
form the original MOTPE algorithm. Further research will focus on why this is
the case, which may yield further improvements in the algorithm. In the HPO
experiments, GP MOTPE shows the best average rank w.r.t. the hypervolume
computed on the validation set. In addition, it showed promising reliability prop-
erties (small changes in hypervolume when the ML algorithm is evaluated on the
test set). Based upon these first results, we believe that the combination of GP
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and TPE is promising enough to warrant further research. The observation that
it outperforms the pure GP algorithm (which used PSO to maximize the infill
criterion) is useful in its own right, as the optimization of infill criteria is known
to be challenging. Using MOTPE, a candidate set can be generated that can
be evaluated efficiently, and which (from these first results) appears to yield
superior results.
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Appendix A. Setup of hyperparameters in the HPO
experiments

HP Description Type Range
Multilayer Perceptron (MLP)

max iter Iterations to optimize weights Int. [1, 1000]
neurons Number of neurons in the hidden layer Int. [5, 1000]
lr init Initial learning rate Int. [1, 6]
b1 First exponential decay rate Real [10−7, 1]
b2 Second exponential decay rate Real [10−7, 1]

Support Vector Machine (SVM)

C Regularization parameter Real [0.1, 2]
kernel Kernel type to be used in the algorithm Cat. [linear, poly, rbf,

sigmoid]
Decision Tree (DT)

max depth Maximum depth of the tree. If 0, then
None is used

Int. [0, 20]

mss Minimum number of samples required
to split an internal node

Real [0, 0.99]

msl Minimum number of samples required
to be at a leaf node

Int. [1, 10]

max f Features in the best split Cat. [auto, sqrt, log2]
criterion Measure the quality of a split Cat. [gini, entropy]
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1 Introduction

Consider the problem where n jobs have to be scheduled on two machines organized in a flowshop
setting. Each job j is defined by a processing time pj,i on machine i = 1, 2 and has to be processed
first on machine 1 and next on machine 2. Each machine can only process one job at a time and
preemption is not allowed. We restrict the search for a solution to the set of permutation sched-
ules. Therefore, the goal is to find a schedule s (permutation) that minimizes the total completion
time

∑
j Cj(s) with Cj(s) the completion time of job j in schedule s. When there is no ambiguity,

we omit the reference to schedule s when referring to completion times. Following the standard
three-field notation in scheduling theory, this problem is referred to as F2||∑j Cj and is strongly
NP-hard [3].

The F2||∑j Cj problem is a challenging problem which has been studied for a long time from
both exact and heuristic point of views. In this work, we don’t consider exact approaches. Along
the years, several heuristic algorithms have been proposed and, to the best of our knowledge,
the most efficient one is a matheuristic proposed in [2]. Matheuristics are local search algorithms
which explore the neighborhood of an incumbent solution by solving a mathematical programming
formulation of the problem. In this work we propose the developpment of a learning based pre-
dictor to improve the matheuristic proposed in [2], notably to drive the exploration of large size
neighborhoods.

2 A learning based matheuristic

The use of machine learning (ML) techniques within operations research (OR) algorithms is a
recent but active and promising research area [1]. To the best of our knowledge, very few con-
tributions of this kind have considered scheduling problems. Our intent is to improve an existing
matheuristic referred to as MATH ([2]), by using a predictor to drive the exploration of neighbor-
hoods. We first provide the basics about MATH heuristic before introducing with the contribution
of machine learning.

A solution s of the F2||∑j Cj problem can be seen as a sequence of jobs and let s[k] be the job
scheduled at position k in s. MATH heuristic proceeds by selecting, at each iteration, a window of
positions [r; r + h] with parameter r being the starting position and parameter h being its width.
When r and h are fixed, the problem is to reschedule jobs in positions r to r + h while keeping
fixed the partial schedule from positions 1 to (r − 1) and from positions (r + h + 1) to n. This
re-optimization is done to optimality by solving a MIP formulation of the problem. Matheuristics
are very efficient heuristics which optimally explore large size neighborhoods but rely on a good
procedure for selecting relevant windows of positions to reschedule. In the MATH heuristic proposed
by Della Croce et al. [2], the value r is randomly selected between 1 and (n− h) at each iteration.
Besides, the authors report that a good trade-off between time and efficiency is to consider h = 12.
The latter choice resulting from an experimental evaluation of the average efficiency of their algo-
rithm.
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The strengh of MATH relies on the genuine exploitation of an efficient mixed integer formulation
of the problem. However, it has several flaws induced by the selection of the r and h values at
each iterations. First, two runs on the same instance of the flowshop problem rarely provides the
same solution which is induced by the random choice of r. Besides, the convergence towards a
good solution can be rather slow as few windows [r; r + h] lead in practice to an improvement of
the incumbent solution. At last, the choice of h = 12 is debatable as sometimes lower values lead
to the same results but faster and as it could be worth trying sometimes larger tractable values.
Notice that MATH stops after a given time limit is reached.

In this research we want to demonstrate that machine learning can help improving the MATH

heuristic in the choice of relevant rescheduling windows. To our opinion, the ultimate goal in such
a perspective is to have a predictor capable of predicting r and h for a given schedule s, if there is a
window of positions whose rescheduling leads to a better solution than s. However, this problem is
very challenging and we rather focus, as a first approach, in building a predictor capable of deciding
if a given window [r; r+ h] is worth being rescheduled, i.e. if there is an improving solution in this
neighborhood. The corresponding learning problem can be formulated as follows: we learn to predict
for a given schedule s and values r and h, if a reoptimization leads to an improvement or not. This
learning problem is a classification problem. The strengths of this learning based matheuristic are
numerous: (1) faster convergence towards a near-optimal solution, (2) removing dependency of the
results on randomness, (3) improvement of the quality of the computed solutions.

3 Solution of the learning problem

A deep learning solution was adopted to create our predictor. Deep Learning is about finding a good
data representation with respect to an objective thanks to a composition of functions. Composition
means that complicated functions are combinations of smaller, simpler functions. Deep learning
relies on data. As a consequence, MATH was instrumented to generate a data set D = {xm, ym}Mm=1

from random instances of the scheduling problem. xm is a triple composed of a job sequence, r
and h. ym is a Boolean value such that ym = 1 if the window [r; r + h] leads to an improvement
and ym = 0 otherwise. This raw data are complex and not easy to handle by machine learning
techniques. So, we decided to build an embedding function ϕ. Each xm is projected into a vector
space of dimension d thanks to the function ϕ(xm) ∈ Rd. Key information about the sequence and
the window are extracted by the function ϕ which can be seen as a smart preprocessing to feed
the predictor with a meaningful representation of a sequence and a window. We have identified 88
potentially relevant features ϕj ∈ R.

The predictor predicts whether or not a reoptimization in the window may lead to an im-
provement. The predictor is a function p(ϕ(xm), θ∗) ∈ [0; 1] where parameters θ∗ ∈ Θ are found

by solving the following learning problem: θ∗ = argmin
θ∈Θ

∑

(xm,ym)∈D
l(p(ϕ(xm), θ), yi), l being a loss

function gauging the error between the predicted value and the true value (ym). The learning
problem is solved by a well-established gradient descent algorithm called Adam [4].

A key point when learning is to built relevant training, validation and test databases, which
must be representative of the reality the predictor will face in the matheuristic. To solve this
challenging problem, for each database, we have randomly generated hundreds of instances of the
scheduling problem. For each of them, we consider all windows [r; r+h] of the incumbent solutions
and systematically reschedule them noting the result as a sample in the database under generation.
At the time of solving the learning problem using the training and validation databases, we pay
attention to penalize the samples which correspond to no improvement of the incumbent solution
as naturally few windows lead to an improvement.

4 Computational experiments

Preliminary results are encouraging but still, works remain to be done to achieve a very accurate
predictor. Notably, it seems that the combinatorics induced by scheduling problem (which is a hard
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permutation problem) leads to make harder the learning and generalization of a good predictor. To
illustrate the potential gain of our approach, we compare two versions of the matheuristic: MATH,
the original version, and lMATH a version embedding a predictor. Heuristic lMATH works exactly as
MATH except that for a given window [r; r + h] MATH systematically reschedule while lMATH follows
the predictor p(ϕ(s), θ∗) to reschedule or not. For a given incumbent schedule s and a window
[r; r + h], if p(ϕ(s), θ∗) ≥ 0.5 then we consider that rescheduling window leads to an improvement
over s. Besides, lMATH stops whenever, for a given s, no windows lead to an improvement according
to the predictor.

The predictor we use in these very preliminary experiments, is built by learning on validation
database which is generated by considering 7 instances with n = 50 jobs, which the training
database is generated by considering 300 instances with n = 50 jobs. For 4 out of these 7 instances
we report in table 1 the results we obtain. Entries BestFound report the best solution value found
by a heuristic. Entries TimeToBest report the time in seconds a heuristic has consumed to reach its
final solution. Entries TotalTime report the total CPU time used by each heuristic before stopping.
Notice that for MATH the time limit has been set to 120s.

Instance 1 Instance 2 Instance 3 Instance 4
MATH lMATH MATH lMATH MATH lMATH MATH lMATH

BestFound 55005 55005 62723 62719 48195 48194 51303 51303

TimeToBest (s) 3.37 0.47 5.40 0.39 5.00 6.57 1.00 0.80

TotalTime (s) 120 7.20 120 8.15 120 12.30 120 5.00
Table 1. Comparison of MATH and lMATH

These results show that building an effective predictor to drive the matheuristic is a research
line worth to be explored. Notice that the above results have been obtained on instances with 50
jobs which are instances easy to solve for MATH: we can legitimately expect that lMATH outperforms
even stronger than MATH on instances with more jobs.
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1 Introduction

The phase field problem is used heavily in the modeling of interfacial dynamics. More specifically, it
has found great utility in forecasting the evolution of solidification, fractures or even tumor growth
[1–4]. In this contribution, we focus on a variant of the phase field model (PFM) that may be
used to simulate the solidification of a pure substance [8]. The distributed optimal control of this
PFM with homogeneous Neumann or Dirichlet boundary conditions has been addressed extensively
in the past [3, 5–7]. To the authors’ best knowledge however, the Dirichlet boundary control for
parabolic equations has been addressed only by a handful of publications [9–11]. When working
with the weak formulation of these problems the non-homogeneity of the boundary condition causes
the problem to not be of variational type. This introduces many difficulties. The common tools
that PDE theory provides to deal with such an issue are approximating the Dirichlet boundary
condition by Robin boundary conditions or using Dirichlet lifts [12]. Alternatively, one can use the
concept of a very weak solution [11]. For the purpose of numerical simulations, we may circumvent
these issues and utilize the strong formulation. Using this analytical setting, it is possible to derive
an efficient gradient computation method based on the adjoint equations.

2 Problem Formulation

Let Ω ⊂ Rn be a bounded domain and let T > 0. The PFM describes the evolution of the phase
field ỹ and the temperature field y within the domain Ω. The state of solidification of a pure
material in Ω is described by the phase field ỹ (x, t) ∈ [0, 1] for any t ∈ [0, T ] and x ∈ Ω. The liquid
subdomain Ωs (t), solid subdomain Ωs (t) and the interface Γ (t) are identified as

Ωs (t) =

{
x ∈ Ω; ỹ (t, x) >

1

2

}
, Ωl (t) =

{
x ∈ Ω; ỹ (t, x) <

1

2

}
, Γ (t) =

{
x ∈ Ω; ỹ (t, x) =

1

2

}
.

Our aim is to obtain a Dirichlet boundary condition for the temperature field y that results in
a phase field profile ỹ at time T that is as close as possible to a prescribed PF profile ỹf ∈ L2 (Ω)
(i.e., the shape of the solid subdomain Ωs (T )). This leads us to consider the problem

min J (y, ỹ, u) =
1

2

∫

Ω

|ỹ (T, x)− ỹf (x)|2 dx+
α

2

∫ T

0

∫

∂Ω

|u (t, x)|2 dtdx (1)

yt = ∆y +Hỹt, in (0, T )×Ω, (2)

y|∂Ω = u on [0, T ]× ∂Ω, (3)

y|t=0 = yini in Ω, (4)

γξ2ỹt = ξ2∆ỹ (5)

+ ỹ (1− ỹ)

(
ỹ − 1

2

)
− βξ (y − ymt) in (0, T )×Ω, (6)

ỹ|∂Ω = ỹbc on [0, T ]× ∂Ω, (7)

ỹ|t=0 = ỹini in Ω, (8)

where α denotes the strength of the regularization term, H is the latent heat of fusion and the
corresponding Dirichlet boundary control u is in C0 ([0, T ]× ∂Ω). The parameter ymt denotes the
melting temperature, γ, β are dimensionless model parameters and ξ is a parameter related to
interface thickness of the phase field ỹ [8].
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3 Gradient Computation

We use Lagrangian formalism to derive the adjoint equations for the problem. Labeling Ĵ (u) =
J (S (u) , u), where S is the solution operator mapping a control u to the solution of (1)-(8) we
arrive at a potentially efficient method for gradient computation

δĴ (u; s) = α

∫ T

0

∫

∂Ω

usdtdSt−
∫ T

0

∫

∂Ω

∇p · ~n |∂Ω sdtdS, (9)

where δĴ (u; s) stands for the directional derivative at point u in direction s, and p is a component
of the solution (p, q) of the adjoint system

pt = ∆p− βξq in (0, T )×Ω, (10)

p|∂Ω = 0 ∂Ω × [0, T ] , (11)

p|t=0 = 0 in Ω, (12)

γξ2qt = ξ2∆q +Hpt − 3z̃2q + 3z̃q − 1

2
q in (0, T )×Ω, (13)

q|∂Ω = 0 on ∂Ω × [0, T ] , (14)

q|t=0 =
1

γξ2
(ỹf − ỹ|t=T ) in Ω, (15)

where z̃ = ỹ (T − t).

4 Numerical Results

We iterate using gradient descent to eventually arive at a local minimum. To solve the primary
(1)-(8) and adjoint equations (10)-(15), the finite difference method on a uniform rectangular grid
is used along with the forward Euler method for time stepping. The trapezoid rule is applied
to approximate the gradient computation (9). Several experiments were performed in one spatial
dimension with parameters that do not necessarily correspond to any physical material. In all of
these experiments, a control that results in the target profile of the phase field being reached is
obtained.

In one of these experiments, we attempt to move a gap between two solid domains. Figure 1a
shows how yini, ỹini and the target profile ỹf are set. Figure 1b shows the resulting temporal control
profile of the left and right Dirichlet boundary control. The final states of the temperature and
heat field compared to the target phase field profile can be reviewed in Figure 1c. These results
demonstrate that even highly non-trivial control profiles can be obtained using this method.

5 Conclusion

A viable numerical method for the optimization of the Dirichlet boundary condition of the phase
field problem was presented. Utilizing the strong formulation of the problem, the adjoint equations
were derived. A basic numerical treatment of the resulting problem using the finite difference
method and trapezoid rule is shown to yield desirable results. The framework is set up so that
combining other more sophisticated numerical solvers (perhaps ones with adaptive time stepping)
should be possible.
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Abstract. A new cooperation-based metaheuristic is proposed for search-
ing gobal optima of functions. It is based on the assumption that the dy-
namics of the objective function does not change significantly between
iterations. It relies on a local search process coupled with a coopera-
tive semi-local search process. Its performances are compared against
four other metaheuristics on unconstrained mono-objective optimization
problems. Results show that the proposed metaheuristic is able to find
the global minimum of the tested functions faster than the compared
methods while reducing the number of iterations and the number of
calls of the objective function.

Keywords: local cooperation · collective decision · metaheuristic opti-
mization · local search

1 Introduction

The simulation of systems is a powerful tool to understand their behaviors and
underline their advantages and limits. Several studies aim at reconstructing vir-
tual systems called digital twins to simulate and verify the behavior of specific
systems. Such systems can be used in mobility or natural disaster studies to re-
produce specific simulation conditions and understand the reasons of such phe-
nomena [4]. Building a digital twin that reproduces the exact behavior of a real
system is not an easy task. As real systems are generaly complex systems with
non-linear interdependencies among their parameters, finding the best modeling
functions and adapting in real-time their parameters to keep a simulation close
to the real behavior of the system is not trivial. Many studies have formalised
the calibration problem as an optimization problem where the parameters of the
modeling functions are tuned by optimizing an objective function: simulation
parameters become decision variables and relevent model outputs are integrated
into objective functions [2,8]. This implies the need for a fast optimization system
that is able to rapidly adapt to changes that may occur in the real system.

Multiple optimization methods exist that could be used to solve this problem
but they present important drawbacks such as a tendency to converge towards
local optima or are too slow [6,11,14].

In this paper we propose a new metaheuristic local optimization method
named CoBOpti, which stands for Cooperation-Based Optimization. It is
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based on an hypothesis of local continuity of the objective function, i.e. the
value of the objective function does not vary dramatically when the value of
decisions variables varies little. Compared to standard state of the art methods,
CoBOpti reaches optimal solutions while reducing the number of iterations and
objective function evaluation.

The main contributions of this paper are as follows:

– We introduce a new local optimization metaheuristic based on an
hypothesis of local continuity and cooperation. This hypothesis allows
to model the problem of searching for a global optimum as a cooperation
problem where a point determines the next point to explore by exploiting
the information of its neighbours.

– We experiment and compare our approach on unconstrained mono-objective
optimization problems with a single decision variable to demonstrate that
the proposed approach allows to reach a global optimum while
minimizing the number of evaluation of the objective function.

The paper is organised as follow : section 2 discusses the limitations of exist-
ing metaheuristics. Section 3 presents our approach and how it gives an answer
to these limitations. In section 4, we introduce the results of our experimenta-
tion, which is then discussed in section 5 before concluding with limitations and
suggest further research.

2 Literature Review

Optimization problems are defined by [3] as finding a vector x̄∗n = (x∗1, ..., x
∗
n)

that optimizes an objective function

f̄k(x̄n) = (o1(x̄n), ..., ok(x̄n)) (1)

where x̄n = (x1, ..., xn) is a vector of n decision variables.
Many methods exist to solve optimization problems, each making some as-

sumptions on the nature of the problem. One category of such optimization
methods is called metaheuristics. [6] defines metaheuristics as methods that per-
form local and higher level search procedures that are capable of escaping local
optima. This definition notably includes methods that employ the notion of
neighborhood. The neighborhood of a solution s is the set of all solutions that
can be reached from s.

Metaheuristics are interesting for solving optimization problems as they are
designed to efficiently explore complex search spaces [6]. Sörensen et al. [12]
further state that the large majority of real-life optimization problems are more
easily solved by metaheuristics, hence our focus on these methods in this paper.

Metaheuristics rely on two important notions: intensification and diversi-
fication. Intensification is a process through which portions of the search space
that seem “promising” are explored more thoroughly, i.e. in the neighborhood
of the best solutions found yet. Diversification, on the other hand, is a process
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aimed at exploring unexplored parts of the search space in hopes to find better
solutions. It usually relies on a some form of memory of visited solutions [5].

There are numerous metaheuristics, each with their own hypotheses. As the
goal of our proposition is to be used to perform on-line calibration, it needs to
rely on fast algorithms and and to be able to handle the set of visited solutions.
The presented methods are thus focused around local search and population-
based meta-heuristics.

Local search algorithms explore the search space by exploring the immedi-
ate neighborhood of the current solution s and selecting the neighbor solution
that has a lower objective value than s. In order to escape from local optima,
they feature some sort of hill-climbing process that allows degrading the objec-
tive value. Such methods include Simulated Annealing (SA), Generalized Sim-
ulated Annealing (GSA), Iterated Local Search, Guided Local Search, etc. [6].
The main advantage of these methods is their rapidity, but an important limi-
tation is their tendency to get stuck in local optima [11]. Somes types of local
search metaheuristics rely on some kind of memory of visited solutions to try
circumvent this limitation such as Tabu Search [6].

Another category of metaheuristics is the population-based algorithms.
These methods rely on a set of solutions, called the population. The search
space is explored by evaluating each solution and modifying them using a set of
simple rules. There are two sub-groups in this category: evolutionary and other
nature-inspired methods.

Evolutionary algorithms (EA) are iterative methods centered around the
notion of fitness. The fitness of a solution represents the quality of this solution
based on the objective function. During each iteration, called a generation, the
fitness of each solution is evaluated. Solutions that feature a high enough fitness
value are kept for the next generation, all other are discarded. New solutions are
generated by stochasticaly crossing over and modifying (mutating) the solutions
that were kept after the selection process. This category includes methods such
as Genetic Algorithms, Differential Evolution (DE) and Genetic Programming
[6,9]. Contrary to local search methods, EAs explore the search space more
thoroughly with bigger population sizes and thus are a lot less susceptible to get
stuck in local optima. However, they require more computing power and show
slower resolution times.

Other population-based methods behave differently from EAs. They still rely
on a set of solutions but draw inspiration from complex biological systems such as
bird flocking or ant colonies. They feature the same advantage as EAs, i.e. a more
thorough exploration of the search space than local search, but still suffer from
the same drawbacks of longer computation times and high computing power
requirements [6]. Some methods such as Particle Swarm Optimization (PSO)
also suffer from a tendency to converge towards local optima because of a poor
distribution of information in the population [14].

In our method we propose to combine the speed of local search approaches
and the distribution of information of population-based methods. To achieve
this goal we borrow the notions of neighborhood and collective reasoning from

64



4 D. Vergnet, E. Kaddoum, N. Verstaevel, F. Amblard

these methods. Based on the assumption that the dynamics of the objective
function do not change significantly between two very close points,
we propose a system that searches for a global optimum through the
collective reasoning of already visited solutions.

Local search and population-based metaheuristics were presented with some
of their limitations in the context of optimization for on-line calibration. The
next section describes our method, CoBOpti, which is evaluated in section 4.

3 CoBOpti: Cooperation-Based Optimization

In this section, we introduce CoBOpti, a Cooperation-Based Optimization meta-
heurtistic. The method we propose combines the advantages of both local search
and population-based algorithms: the speed of the former and the information
distribution of the latter.

Section 3.1 describes the general principle of the approach by giving an
overview of the different search phases; section 3.2 details the local search pro-
cess; section 3.3 details the semi-local search process and how it enables getting
out of local minima; finally, section 3.4 describes how points cooperate to solve
specific situations.

3.1 General Principle

The goal of CoBOpti is to iteratively explore the surface of an objective function
in order to reach a global optimum. During each iteration, the system has to
determine the next point to explore. A point pi is defined as a pair pi = (xi, oi)
where xi is the value of the single decision variable and oi is the value of the
objective function at xi. The succession of visited points is called a chain. The
algorithm is composed of 4 phases (Figure 1).

The algorithm combines two different heursitics: a local one (phases 1, 2
and 3), which objective is to discover a local minimum, and semi-local one
(phase 4), which uses the set of local minimum already discovered to look for
a global minimum.

The goal of local search (phase 1) is to find a local minimum. Each itera-
tion t starts with a chain containing some already visited points p(t), p(t−1), etc.
Among all the points in the chain, the system choose two points to determine in
which direction it needs to go (phases 2 and 3). This process continues until
a local minimum has been found, i.e. the distance along the x axis between the
two points with the lowest objective value of the chain is less than εdist.

The objective of semi-local search is to explore the function towards a
global minimum. This process has to decide which point p(t + 1) to explore
based on already visited local minima (phase 4). Every time the semi-local
search has decided on which point to explore next, a new chain is created and
the local search continues from this new point.

The search stops when a visited local minimum has an objective value less
than a predefined threshold εobj .
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The notion of chains is important as it isolates clusters of points (black and
red dots in figure 1). It is not desirable that distant points interact during the
local search process because of potential higher discrepencies between the actual
function value and its estimation. Using chains implies that distant points cannot
be used together to compute linear approximations during local search and thus
mitigates potential errors. Several chains are created during the optimization
process.

Fig. 1. The search phases of CoBOpti: point selection, local search, higher level search

The following sections detail how points are selected and how p(t + 1) is
computed. Section 3.2 describes how the local search process selects points to
reach a local minima; section 3.3 describes how the system gets out of local
minima and searches for a global optimum; finally, section 3.4 describes how
points cooperate to solve some difficult situations.

3.2 Local Search

The objective of local search is to follow the curve of the objective function to
find a local minimum. At each iteration t, the next point p(t + 1) to explore is
determined by computing linear approximations of the objective function using
two points of the current chain.

Therefore, at each iteration t, two points need to be selected among those in
the current chain. The first selected point is the one with the lowest objective
value of the chain at time t, noted pmin. The second selected point is one of the
neighbors of pmin. Two points p1 and p2 of a chain are said to be neighbors if
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they are immediately next to each other, i.e. there is no third point p3 between
them along the x axis. A point can have a maximum of two neighbors. For
example, in figure 1, points p1 and p2 are neighbors but points p2 and p4 are
not.

As pmin is the point with the lowest objective value of its chain, it has either
one or two neighbors at any given time.

Phases 2 and 3 of figure 1 illustrate the first situation, where p(t) = pmin

(green point) has a single neighbor p(t− 1). The x component of the next point
p(t+1) is computed by a linear approximation of the objective function between
pmin = (xmin, omin) and its only neighbor p(t− 1) = pn = (xn, on):

x(t+ 1) = xn +
−on(xmin − xn)

omin − on
(2)

This equation returns the x component of the point that would have an objective
value of 0 according to the linear approximation of the objective function.

To ensure that the initial assumption on the function’s dynamics stays true,
the next point cannot be farther than kdist times the distance between pmin and
pn. If it is the case, x(t+1) is set to xmin+kdist(xmin−xn). In our experiments,
kdist = 5 was used.

In the second situation, where pmin has two neighbors pl and ph, as pmin is
the point with the lowest known objective value, both neighbors have a higher
objective value. This implies that a local minimum is somewhere between pl and
ph. x(t+ 1) is thus determined by:

x(t+ 1) =
xmin + xn

2
(3)

where xn is the x component of either pl or ph alternatively. Figure 1 shows an
example of this situation (black points). The point p6 was computed this way,
using points p4 as pmin and p5 as its lowest neighbor.

It should be noted that the objective function value does not need to be
re-evaluated at the location of the selected neighbor as it is assumed that it has
not changed since it was first evaluated.

This whole process repeats until a local minimum is found. The point pmin

is considered to be a local minimum when the distance to one of its neighbors
is less than εdist.

3.3 Semi-Local Search

The goal of the semi-local search is to find a global minimum. The way points are
selected is similar to what was described in the local search process but defers
in some key aspects.

In order to compute x component of the next point p(t + 1) using linear
approximations of the objective function, two points are selected: the latest local
minimum pmin1 = (xmin1, omin1) found by the local-search process and one of
its neighbors. The neighbors of a local minimum are the other adjacent local
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minima. As with regular points described in section 3.2, local minima have a
maximum of two neighbors.

The selected local minimum can have one or two neighbors. Table 1 describes
which neighbor is selected depending on the precise situation, where pl = (xl, ol)
(resp. ph = (xh, oh)) are neighbors of pmin1 with a lower (resp. higher) x value.

Table 1. Selected neighbor of pmin1 depending on the situation

Situation Selected neighbor

1 One neighbor pn pn
2 Two neighbors, ol < omin1 < oh pl
3 Two neighbors, ol > omin1 > oh ph
4 Two neighbors, ol < omin1 and omin1 > oh pl if ol < oh, otherwise ph
5 Two neighbors, ol > omin1 and omin1 < oh pl if ol < oh, otherwise ph

For situations 1, 2, 3 and 4, the next point x(t+1) is computed using equation
2, swapping pmin for pmin1 and p(t − 1) for the selected neighbor. Phase 4 of
figure 1 illustrates this process for situation 1. In this diagram, there are two
known local minima, pmin1 and pmin2, the latter being the newly found one. The
next point p(t+1) is estimated using a linear approximation between both local
minima. As with the local search, p(t+1) cannot be farther than k|xmin1 −xn|,
if it is the case, the same operations are applied as described in section 3.2.

In situation 5, as both neighbors pl and ph of pmin1 have a higher objective
value, a global minimum is probably between pl and ph. Equation 3 is used again
to determine the next point.

Once x(t+1) has been computed, the local search process resumes from this
new point with a new chain.

3.4 Cooperation Mechanisms

Sections 3.2 and 3.3 described the nominal behavior of CoBOpti. The system
may encounter a number of special situations during both local and semi-local
searches. This section presents cooperation rules to detect and solve them.

Case 1. During local search, when a new chain is created, either because
it is the first iteration or the semi-local search created a new one, there is a
single point inside the chain. This point thus has no neighbors to compute the
next point with. Hence, no linear approximation can be estimated and x(t+1) is
directly chosen randomly among {xmin−δ, xmin+δ} where δ = 1

kprop
|xlow−xhigh|

and xlow (resp. xhigh) the lower (resp. higher) bounds of the definition domain
of x. In our experiment, kprop = 100 was used.

Case 2. During semi-local search, a similar situation may occur where there
is only one known local minimum. As there are no neighbors to make linear
approximations with, a hill-climbing process is initiated to escape the local
minimum. This process relies on the two points of the latest chain that have the
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lowest and highest x value, called extrema. The goal is to climb up the slopes
around the local minimum to find another slope of opposite direction.

The search focuses on the slope where the extremum with the lowest objective
value is. The next point is computed using equation 4 where ple = (xle, o

l
e) is the

extremum with the lowest objective value and phe = (xhe , o
h
e ) is the other. pn =

(xn, on) is the neighbor of ple. This equation computes the x value of the next
point which would have an objective value equal to that of the highest extremum,
according to the linear approximation of the objective function between the
lowest extremum and its neighbor.

x(t+ 1) = xle +
(ohe − ole)(xn − xle)

on − ole
(4)

At the next iteration, if the actual objective value is higher than ohe , the
process switches sides; if this is not the case, it continues as is. This process
is repeated until the actual objective value is lower than ole. The local search
process then resumes with a new chain.

During this hill-climbing phase, the distance |x(t+1)−xle| cannot be smaller
than a threshold δmin in order to prevent the process from slowing down too
much.

Case 3. It may happen that the local search process finds a local minimum
that was already discovered in previous iterations. In order to escape a potential
search loop, two decisions may occur. If a hill-climbing phase was previously
initiated at this local minimum, the next point x(t+ 1) is computed again and
multiplied by a factor of 2, to explore twice as far and explore a new area. On
the contrary, if no hill-climbing phase was ever initiated at this local minimum,
one is started, in hopes to find a new adjacent valley.

Two local minima are considered to be identical if their distance along the x
axis is less than a threshold εsame.

In this section we presented our approach. It relies on the notion of chains of
points. We first presented a local search process on a chain that allows finding
local optima. When a local optimum is found, a semi-local search process allows
finding new regions of the search-space to explore. Cooperation mechanisms were
introduced to account for special situations, diversify the solutions and create
new chains.

In the next section we evaluate the performances of our method. We com-
pare it to four other local-search and population-based metaheuristics on uncon-
strained mono-objective optimization problems.

4 Experiments and Results

This section compares the performances of CoBOpti with four other methods
cited in section 2: Simulated Annealing (SA), Generalized Simulated Annealing
(GSA), Differential Evolution (DE) and Particle Swarm Optimization (PSO).

Section 4.1 presents the different test functions used to test the performances;
section 4.2 describes the protocole for comparing the performances of CoBOpti
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with other selected methods; section 4.3 presents the results of the experiments;
finally, results are discussed in section 5.

4.1 Test Functions

For the performance comparison experiments, four functions have been selected:
Gramacy and Lee (domain: [0.5, 2.5]), Ackley (parameters: d = 1, a = 20,
b = 0.2, c = 2π; domain: [−32, 32]), Rastrigin (parameter: d = 1; domain:
[−5.12, 5.12]) and Levy function (parameter: d = 1; domain: [−10, 10]). These
functions have been chosen because they feature many local minima, a single
global minimum, and a single parameter [1,7,10,13].

4.2 Methods Comparison

The performances of each approach (SA, GSA, DE and PSO) are compared
against CoBOpti’s. They were all implemented in Python 3.8. GSA and DE were
implemented using the scipy.optimize.dual annealing and scipy.optimize

.differential evolution functions, PSO was implemented with pyswarm.pso

package, and SA was a custom implementation. For GSA, DE and PSO, all
optional parameters excepts those related to bounds, initial state and maximum
number of iterations were let to their default value.

Control variables of CoBOpti are set as follows: εdist = 10−4 (local minimum
detection threshold), εsame = 0.01 (minimum distance between local minima),
δmin = 10−4 (minimum step size during hill climbing phase), and εobj = 5 · 10−3

(precision threshold for global minimum objective value).
For every method, except PSO, the initial value vinit for each decision variable

in a single run is selected by a Sobol Sequence. As values generated by this
sequence are all in the [0, 1] interval, they are adjusted to the variable’s domain
using the formula vinit = s · (dmax − dmin) + dmin where s is a value generated
by the sequence. We did not specify vinit values for PSO as the implementation
we used did not allow it.

Three metrics are defined: success rate, i.e. the ratio of executions that
found the global minimum, number of iterations, number of evaluations
of the objective function.

4.3 Results

Table 2 shows the success rate, mean number of iterations and function evalu-
ations over 200 executions for each method and function, with a maximum of
1000 iterations.

CoBOpti was able to find the global minimum for all four functions. It took
on average between 35 and 100 iterations to find the global minimum with a
similar number of objective function evaluations.

The constant 1000 iterations for SA and GSA are explained by their stopping
criterion. These methods rely on the number of elapsed iterations to compute
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probability distributions: the more iterations have passed, the less likely the algo-
rithm is to select a non-improving move. Once the allowed number of iterations
has passed, no more non-improving moves can be selected and the algorithm
stops. The visited point with the lowest objective value is then returned.

SA did not yield good results, except for Gramacy and Lee’s function with
nearly 100 % of success rate. It yielded very poor results for Ackley function
with only 2 %. These results are coherent with what was described in the review
(section 2).

GSA yielded very good results with 100 % on all functions. The number of
objective function evaluations was two times higher than SA, around 2000.

DE’s success rate is a bit lower than other methods except for SA. However,
the mean number of iteration is quite low, staying between 8 and 50.

PSO was able to find the global minimum in all four cases with a low mean
number of iterations, between 20 and 50. However, the mean number of function
evaluations is higher than other methods, ranging from 2000 to more than 4500.

Table 2. Success rates, average number of iterations and objective function evaluations
of tested methods

Method Function Success rate # of iterations # of evaluations

CoBOpti G. & L. 100 % 49.31 50.31
Ackley 100 % 95.94 96.94

Rastrigin 100 % 80.69 81.69
Levy 100 % 35.3 36.3

SA G. & L. 99.5 % 1000 1000
Ackley 2 % 1000 1000

Rastrigin 10.5 % 1000 1000
Levy 30 % 1000 1000

GSA G. & L. 100 % 1000 2035.58
Ackley 100 % 1000 2124.43

Rastrigin 100 % 1000 2039.97
Levy 100 % 1000 2019.60

DE G. & L. 97.5 % 8.71 154.54
Ackley 100 % 49.62 801.63

Rastrigin 94 % 30.91 481.06
Levy 100 % 50.45 773.75

PSO G. & L. 100 % 20.61 2008.70
Ackley 100 % 46.92 4638.51

Rastrigin 100 % 25.57 2505.57
Levy 100 % 20.02 1951.32

5 Analysis and Discussion

The initial assumption of continuity in function dynamics has been validated by
the experiments on several standard functions. CoBOpti showed better success
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rates than SA and DE, and nearly as good as GSA and PSO. Although the
number of iterations of CoBOpti is comparable to that of DE and PSO, its
number of function evaluations is several orders of magnitude lower.

This low number of objective function evaluations can be attributed to the
fact that the objective function is evaluated only once per visited point. This
behavior stems from the initial assumption that states that the dynamics of the
objective function does not change significantly between two close points.

Execution times were not shown as differences between methods were not
significant. This is most likely due to the relatively low complexity of the selected
functions.

A sensitivity analysis should be done to test the influence of kdist and kprop
on CoBOpti’s performances.

CoBOpti was only tested on mono-objective optimization problems with a
single decision variable. Further research is needed to generalize this approach
to multi-objective global optimization problems with multiple decision variables.
The core principle should stay similar to what was presented in this paper. New
cooperation mechanisms should be added to select which objective to minimize
and which decision variables to tune at each cycle.

Other experiments could be conducted with other complex functions. As real-
world applications are subject to noisy data, resilience to such noise has to be
tested.

6 Conclusion

In this paper, CoBOpti, a new metaheuristic for global optimization, was pre-
sented. It is based on a hypothesis of local continuity of the dynamics of the
objective function. CoBOpti explores the search space by relying on the cooper-
ation of visited solutions based on this hypothesis.

This paper focuses on mono-objective global optimization problems with a
single decision variable. Experiments showed that CoBOpti needs less objective
function evaluations than other common metaheurstic methods while maintain-
ing similar or better success rates on 1D-functions.

CoBOpti is a promising proposition for use in on-line calibration. Indeed,
its low number of objective function evaluations would be useful in the context
of on-line calibration of complex simulation models with computationally inten-
sive objective functions. This property could help reduce the time required to
calibrate these kinds of models.
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1 Introduction

Nowadays, machine learning algorithms are applied to a huge variety of problems such as data
classification, anomaly detection and data generation, obtaining impressive results [14]. Among
them, artificial neural networks [6] aim to simulate the behavior of the human brain, and thanks
to the current computation capabilities, they can learn to solve complex problems in an acceptable
time. More specifically, Convolution Neural Networks (CNN) perform well on images due to the
convolution operation carried out during the data processing.

However, these algorithms require training. The most used method is backpropagation, which
calculates the gradient of each param of the network to find the values that minimize the error
of the system on the dataset. Thus, this method is heavy computationally demanding and may
converge to a local optimum [4][5], which makes training a difficult task to accomplish.

In order to solve this problem, population-based meta-heuristic algorithms have been are pro-
posed to train neural networks [9]. A priori, they can find global optimal without being trapped
at local ones, so they are being incorporated in some works to optimize the weigths and struc-
ture of neural networks [2][12]. More specifically, population-based optimizers consist of individuals
(weights in this case), which aim to find the best value in a search space [10]. Among population-
based algorithms, Teaching-Learning-Based Optimization (TLBO) simulates a teaching-learning
process based on the influence of a teacher on the performance of learners in a class [11]. It may fit
for weight optimisation as it supports high-dimensional problems [13]. Also, the user is not required
to set any other parameter than the population size and the number of cycles, which differs from
other population-based meta-heuristics.

In other works, the meta heuristic algorithms are mainly applied in lightweight neural networks
having a small quantity of parameters [1][2]. In those cases, the optimisation algorithms worked
well. However, in our case, we aim to find a solution to the problem of big neural networks,
having more than 50.000k weights as in real applications, neural networks have a great quantity
of parameters.

In this work, the weights of a fully-connected convolutional neural network are optimised by
using the TLBO algorithm. They are compared to the performance achieved with backpropagation
through stochastic-gradient descent. Finally, a hybrid method is proposed. It uses some solutions
of backpropagation to define the initial population of TLBO and lets the latter try to improve
them.

2 Methodology

The application of this work is an image classification task. The dataset is CIFAR10, a well-known
dataset which consists of 60.000 images; 50.000 are used for training and 10.000 are left for testing.
Their dimensions are 32x32x3 and there are 10 classes in total [7]. A CNN neural network adopting
the LeNet5-CNN architecture has been adopted in the experiments [8]. It has 71.919 parameters
in total, so it is a small network compared to other instances.

The objective function of this algorithm is the cross entropy value of the proposed neural
network after evaluating the training dataset. However, only the best individual is changed if the
cross entropy value in the validation dataset improves, avoiding overfitting. Regarding the initial
population, TLBO initializes its individuals with values in the ranges defined by the user. For
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neural networks, the most widespread weights initialization techniques are Xavier and He. These
methods take into account the number of neurons before and after the layer, so depending on the
layer, the range of the initial weights varies. In this case, the initial population was randomly set
according to the Xavier initializer limits. However, after preliminary experimentation, TLBO was
confirmed to be unable to find competitive solutions from a completely random start.

Therefore, an hybrid approach (Figure 1) is proposed to adapt the TLBO to this highly dimen-
sional problem.

Fig. 1. Hybrid approach

Accordingly, TLBO will start with a population with two sorts of individuals. The first group
consists of R individuals randomly generated within the Xavier limits. The second one contains N
individuals resulting from instances of the desired neural network trained using backpropagation
and stochastic gradient descend. Their training finishes when the model validation accuracy main-
tains the same value for several epochs, or it starts to decrease. This indicates that the weights are
trained and have a good accuracy on the train and validation datasets. However, if the training
continues, the network could be overfitted and perform bad on validation dataset.

After initialization, the TLBO executes the teacher and learner stages in its main iteration
loop[15]. In the teacher phase, the best individual becomes the teacher and the rest remain as stu-
dents. Then, a vector containing the mean of each dimension along all the individuals is calculated,
and the students are updated taking into account this vector, the values of the teacher, and some
random factors. The changes are only kept if they result in a better solution, while non-improving
individuals are not ultimately altered. In the learning phase, the students interact with each other
in pairs. It has a local scope and lets the best member of the pair act as the teacher. These phases
occur as many times as the number of cycles defined by the user.

Finally, the best solution achieved so far is returned as the neural network configuration pro-
posed.

The implementation of TLBO used has been obtained from [3]. It is programmed in C and
designed to run in parallel by using the MPI and OpenMP libraries in multicores. Concerning
the evaluation of the cost function, a neural network framework has been designed and imple-
mented from scratch in C. The previous training of LeNet5-CNN neural networks which build
the initial population is carried out using the Tensorflow framework. Therefore, a custom function
that translates the weights and biases from Tensorflow to the custom framework in C has been
developed.

3 Preliminary results

In order to evaluate the hybrid system, the system was launched with the following configuration:
A total of 1.000 images were used to train the neural network and 100 images were left to evaluate.
The initial population was set to 1.000, where 50 individuals were the result of 50 neural networks
trained with Tensorflow. These neural networks were trained with the images used to train the
hybrid system. Their stopping condition was set to 5 epochs without improving the validation loss.
In the most cases, the training lasted between 12 and 13 epochs. The validation accuracy in the
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trained neural networks had an average of 45%. This is caused by the small quantity of images
used to train.

Regarding the configuration of TLBO, the total number of cycles was set to 500. In addition, 15
cycles without improving is set as stopping condition. In the results, the train of the system results
to be heavy to computationally expensive. It lasted 76.5 hours, stopping in the cycle number 49.
Nevertheless, the final results, i.e., sets of weights and biases found, outperform those achieved by
letting the networks train in TensorFlow and backpropagation.

For future work, the system will be tested with different datasets and neural network architec-
tures.
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1 Introduction

Optimization problems usually arise in fields such as Architecture, Engineering, and Applied Sci-
ences in general [2–4]. Roughly speaking, this kind of problem requires finding the extreme points
(maxima or minima, depending on the type) of a function, which involves different variables and
models some aspect. For example, the function, known as the objective function in this field, can
represent the cost of a building depending on the sort of materials and quantities. In this situation,
it can be assumed that the points sought will be the minima, i.e., the values of the variables that
result in the minimum cost. Optimization is also valuable for model tuning: the parameters become
variables, and the objective function compares the achieved and expected outputs [3].

Depending on the objective function, constraints and variables (e.g., continuous or discrete),
there exist different types of optimization problems and methods to face them. For instance, lin-
ear objective functions and constraints with real bounded variables generally result in problems
relatively easy to solve [1]. However, this is not always the case, especially when the functions in-
volved do not exhibit a closed analytical form or do not have exploitable mathematical properties
(such as linearity and a convex search space). Fortunately, there exist methods with fewer problem
requirements. They usually rely on intuitive ideas (heuristics) to obtain acceptable results [7].

The optimization problem that centers the attention of this work can be formulated as follows:

minimize
x

f(x)

subject to Li ≤ xi ≤ Ui, i = 1, . . . , N.
(1)

where f is a N -dimensional objective function, i.e., f : RN → R, and x refers to any input in RN

belonging to the domain [L1, U1]× . . .× [LN , UN ]. As can be seen, the defined problem only consists
of the objective function and the bounds of each variable. There is no additional information about
the mathematical properties of f (e.g., convexity, multimodality and smoothness), which can only
be evaluated, and the search space is defined by an N -dimensional domain. Therefore, this problem
can be classified as a black-box optimization with box constraints [2, 4], and it is suitable for model
tuning applications [3, 6], which is one of the expected targets of the proposed method.

In the literature, there are multiple population-based meta-heuristics that can be applied to the
problem defined above [7]. Traditional genetic algorithms, Differential Evolution [3], and UEGO [6]
are valid examples. However, they have multiple parameters, so they require fine parameter tuning.
TLBO [3] avoids this problem as a population-based method that only expects the population
size and number of cycles. Regardless, this sort of method will generally need numerous function
evaluations to converge due to its haphazard coverage of the search space. Another option especially
conceived for black-box optimization is DIRECT [4], which is deterministic in contrast to the
previous ones, and it has no other parameters than the number of function evaluations and a
tolerance factor that has little effect on its performance. However, its rectangle division behavior
is rigid, and depending on the problem, it may require many function evaluations.

This work proposes an optimizer that aims to find a trade-off between the lack of parameters,
stochasticity, and a broad exploration of the search space. For this purpose, it combines randomness
and the distribution of different search windows linked to a local optimizer from UEGO, with
the strict division rules and lack of parameters from DIRECT. The resulting method is called
Tangram and can be seen as a rule-based multi-start component linked to a local optimizer. The
one selected for now is SASS [5], a stochastic hill-climber with a robust default configuration.
Tangram is expected to be effective for low-dimensional problems (less than 20 variables).
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2 Method description

Tangram only expects the objective function, whose input is scaled from RN to [0, 1]
N

, and the
number of function evaluations allowed. As it occurs with DIRECT, normalization allows visual-
izing the search space as the unit hypercube [4].

The proposed method starts by evaluating the center of the search space, i.e., (0.5, . . . , 0.5) ∈
RN , which becomes the current result. This defines its initialization stage. After that, it executes
its main loop while there are function evaluations remaining. The loop consists of these stages:

Global phase: The local search component, SASS, is launched from the current result to try to
improve it. This optimizer is configured so that the maximum step size is equal to the diameter
of the search space. This strategy allows reaching any solution and comes from the way in which
UEGO handles its initial or first-level species. Figure 1a depicts this process starting from the
initial point, i.e., the center of the search space, for a hypothetical 2D problem.

Division: From the current result, the midpoint between it and each corner of the search space
is computed and evaluated. This part aims to emphasize the exploration of the whole search
space and allows escaping from local optima. It is vaguely inspired in how DIRECT keeps a
representing point of every region of the search space, even though Tangram may not consider
fully disjoint zones. Figure 1b shows this phase in the same previous context. Additionally,
notice that if the resulting polygons were colored in different colors as if they were solid pieces,
they would resemble a Tangram, i.e., the Chinese dissection puzzle [8].

Local phase: The local search component, SASS, is launched from each of the previous midpoints
to try to improve them. Those featuring a better initial value for the objective function go first.
This order of execution aims to ensure exploring the most promising regions at least, in case
that the function evaluation budget is consumed before considering all of them. In contrast to
the global phase, for this one, the optimizer is configured not to take steps bigger than the
distance between the starting point and the corner used to define it. Regardless, notice that
the local search updates its current point every time that it finds a better point, so the division
is not rigid as introduced.

Update: If any of the points found after the division and local searches is better than the current
solution, that point replaces it. The method then returns to the global phase and executes
another full iteration, as long as there are function evaluations available.

After consuming all the function evaluations allowed, Tangram returns the best solution achieved
so far. Notice that the method may run out of function evaluations at any point. Then, it will assign
an infinite value to any new point and try to end as soon as possible.

Concerning the local search component, SASS only requires the objective function to be fully
defined in the search space. It starts at any given point and randomly decides a direction to move.
The jump size cannot exceed a given size, which depends on the phase as previously explained,
and it is scaled based on the number of improving and non-improving (discarded) movements.
Movements result from adding a normally-distributed random perturbation vector with a stan-
dard deviation between 1e−5 and 1, starting at the upper bound and ultimately rescaled by the
maximum step size. The standard deviation is doubled after five consecutive successful movements
or halved after three consecutive discarded ones. This is the recommended configuration, and it is
known to perform well. Similarly, SASS will terminate after 32 iterations, which is assumed enough
to converge to the nearby optima according to previous knowledge on the method when used with
UEGO. Nevertheless, varying this local budget would just result in a second parameter to tune.

3 Preliminary results and future work

The 20 box-constrained continuous problems proposed in [2], featuring between 1 to 10 variables,
have been addressed with Tangram. It is compared to a random search and TLBO, which is known
to be simple to tune and effective [3]. The criterion to allow function evaluations in that work has
been maintained herein, i.e., 30(N + 1). As the authors say, these problems are challenging for
black-box methods not exploiting any analytical information. They get even harder considering
the low number of function evaluations allowed, which is compatible with a context where the cost
function is computationally demanding (e.g., simulation-based model tuning). The development
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Fig. 1. Depiction of the main concepts of Tangram.

environment used is MATLAB 2020a in Mac OSX (MacBook Pro, Intel i5 2.9 GHz, 8 GB of RAM).
Due to stochasticity, each method has been executed 200 independent times for each problem.

Tangram achieved the best average in 17 out of 20 problems, while TLBO was the best in the
3 remaining. More specifically, TLBO only won in those problems with more variables, i.e., one
of 8 and two of 10 variables. For them, it seems that Tangram cannot fully explore the regions
before running out of function evaluations as the number of corners increases exponentially, yet
the budget does linearly. Finally, as expected, the random search did not win any benchmark.

For future work, based on the results achieved, we will try to adjust some parts of Tangram
related to the distribution of function evaluations. We also intend to increase the number of bench-
mark problems and the methods compared, possibly starting with DIRECT and UEGO.
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1 Introduction

During the last fifteen years, we have seen a tremendous increase of computing devices in our
everyday lives. This influx of devices has allowed novel applications of machine learning and has
raised issues that were not originally foreseen when the field of machine learning was being formed.
In particular, we can see applications that combine learning in a networked environment (federated
learning) as well as learning through continuous streams of data (stream-based learning). In this
work we want to identify research issues by taking into account one more dimension of modern
machine learning which has not been explored in this joint context: adversarially robust models.

server

Fig. 1. Typical topology in a federated
learning setup. The central node plays the
role of the server that maintains a global
model, while the client nodes at the edges
of the star topology maintain a local model
that relies on data that follow distributions
that are specific to those nodes.

Federated Learning. In a federated learning sce-
nario [5] we have different computing nodes, called
clients, interconnected in a network. These nodes are
trying to accomplish a common supervised-learning
task using a common predictive mechanism (e.g., a
neural network) by forming local models that are ob-
tained using local training data. The local data typ-
ically follow different distributions on the different
nodes. The goal is to learn a global model by sharing
information about the locally learnt models between
the clients, but not by sharing local training data as
this could violate privacy constraints. The most com-
mon approach for federated learning is that of a star
topology (see Figure 1), where a central server orches-
trates the learning process of a global model by re-
ceiving information from local models that reside on
the clients, which in turn have been trained from local
private data. It is also possible to have tree-like hierar-
chical or even decentralized topologies with the same
ultimate goal of learning a common global model; how-
ever, these approaches have been less explored.

Stream-Based Learning. In a stream-based learning scenario [6] the learner is faced with a contin-
uous stream of training data. This continuous stream of data poses two main issues to the learning
process: (a) the learner cannot possibly hold all the training data in the main memory (because of
the vast amount of the data in the long run), and (b) the learner should be able to deal with concept
drift (changes in the data-generating distribution). In addition, the arrival rate of the training data
poses further processing issues to the learning mechanism, should the learner want to update the
learnt model by using the information of all the data that is presented to them.

Applications of Stream-Based Federated Learning. There are several applications under the um-
brella of stream-based federated learning. Such applications include text prediction on mobile
devices [8], healthcare applications using wearable devices [3], control of signal lights using com-
puting devices and cameras on traffic lights [11], anomaly detection on sensors used for smart
homes, and smart applications in general [17], to name a few.
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2 The Setup: Adversarially Robust Stream-Based Federated Learning

Another property that is sought for in modern machine learning classifiers is that of adversarial
robustness. While the field has its roots in studying (rigorously or experimentally) different noise
models (see, e.g., [18] for some popular noise models), nevertheless, in the last decade the field
has grown by including broader training-time as well as test-time attacks that are orchestrated by
adversaries of varying strengths; see, e.g., [16], for a taxonomy of these recent methods.

Training-time attacks are typically known as poisoning attacks as an adversary is contaminating
the training set that is subsequently used by the learner and the purpose of the adversary is to cause
an increase in the error rate (or, lower the confidence) for the predictions of the trained model.
Such attacks can be either targeted or indiscriminate, depending, respectively, (a) on whether the
adversary aims to increase the error rate (and/or lower the confidence) of the trained model on
a particular (set of) test examples that the adversary has in mind, or (b) the adversary aims to
increase the error rate (lower the confidence) in general, as test data is drawn from some underlying
distribution. Test-time attacks are known as evasion attacks, or as the field of adversarial examples.
Furthermore, adversaries may coordinate the attacks between the training phase and the test phase,
resulting in either backdoor attacks [7], or hybrid attacks [4]. However, the important assumption
in the joint setting that we want to study is the following one.

Assumption 1 Due to the distributed nature of federated learning, adversaries may have under
their control a certain fraction of the total number of clients of the network and as a consequence
these nodes can be vulnerable to noise, poisoning attacks, or adversarial examples.

The above assumption, together with the special circumstances and constraints that stream-based
learning induces in the whole learning process, raise several issues regarding adversarial robustness
of the global and the local models, which we discuss in the following section.

3 Core Research Issues

Studying training-time attacks in networked environments has led to some interesting results. For
example, while in traditional single-source learning a learner cannot tolerate malicious noise that
has a rate of at least ε

1+ε [9], in the case of multiple sources the learner can still generate a model
that has error rate less than ε as long as less than half of the sources are maliciously changed [10],
assuming that the distributions on the different sources are identical and that the nodes may
share actual examples in order to learn the global model. In a similar setting, [12] has shown that
clean-label attacks are an effective attack mechanism in a federated learning setting. Another line
of work is concentrated on exploring the potential and limitations of specific learners in settings
where training data are corrupted as dictated by certain noise models or attack methods; e.g., [13,
2]. Furthermore, while test-time attacks have not yet been investigated a lot in a federated setting,
nevertheless, the joint setting of backdoor attacks has received some attention; e.g., [1].

The above lines of work may operate in a passive or online learning setting, but have not been
explored in a stream-based setting. Thus it is unclear, for example, how limited memory may affect
positive and negative results, as well as what additional benefits a federated learning system that
allows concept drift can enjoy. In addition, how the detection of poisoned data at local sites can
be integrated with stream-based learning at local sites to address other important characteristics
of data streams, such as data transiency (data become less important as time goes), temporal
context, and data uncertainty. These characteristics also need to be considered when creating the
global model and broadcasting it to the participating local sites in the federated learning system.

Another line of work has to do with defense mechanisms that we can embed into stream-based
federated learning methods so that we can make the models resistant to adversarial situations
mentioned above. For example, how far one can go with sanitization methods and outlier detection
mechanisms, whether outlier detection mechanisms should be used to detect outliers at local devices
only or whether they should also be applied at the server to detect outliers in the local models sent
to the server (for example, outliers in the local model parameters), and what kind of metrics one
can use so that we can uncover attacks that occur on the stream of data that is presented to the
learner. Furthermore, in real-world settings, such defense mechanisms and removal of harmful data
would require not only the identification of the poisoned data in the stream, but also an explanation

81



Research Issues in Adversarially Robust Stream-Based Federated Learning 3

to be provided to the individual users, thus promoting trust in the task that is executed by the
global model. In addition, we would like the defense and explanation mechanisms not only to be
effective, but also to be lightweight and be able to operate in real-time as the stream of data arrives
at the learner. A similar explanation mechanism for stream outlier detection has been proposed
in [15]. Concluding, one may also care about complex performance measures [14] and it is unclear
what can be accomplished for imbalanced distributions under the setup of Section 2.

4 Conclusions

We identified research issues that are novel for the framework of adversarially robust stream-based
federated learning and anticipate stimulating investigations in the future. Finally, we note that
studying regression problems would give an additional dimension to the issues raised in Section 3.
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Abstract. The continuous approximation model of VRP analyzes cost at the 
planning and strategic analysis stage in the delivery and logistic field. Most 
previous studies used the tour distance between customers and the linehaul 
distance between the depot and the customers. This study focused on the linehaul 
distance, and we applied the formula for the average length in a right triangle and 
presented the average distance between depot and service area. Our proposed 
model is tested in instances with different locations of the depot and the service 
area, trucks, and customers. Regression results indicate that the approximation 
model improves accuracy if the depot locates outside the service area. Our results 
can be applied when planning deliveries, for cases where the depot is located at 
the edge of the city and outside the delivery area, and planning area segmentation. 

Keywords: Vehicle routing problem, Distance estimation, Continuous 
approximation approach. 

1 Introduction 

The travel salesman problem (TSP) and vehicle routing problem (VRP) are methods 
for minimizing the cost of transportation using single or multiple vehicles from one 
location to a customer. This problem is extremely important not only in the logistics 
sector but also in the public transportation sector, where new services such as ride-
sharing and car-pooling are being developed. With the improvement in computers and 
algorithms, the number of possible optimal solutions has increased; however, there are 
many cases where an approximate solution is required. For example, if the number of 
demand points is too high for an optimal solution, the number of vehicles will be too 
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high, or the specific location of the demand points will be unknown. Some 
mathematical models (commonly called continuous approximation models) can be used 
to approximate the optimal solution. Currently, numerous studies have been conducted 
on continuous approximation models for the TSP and VRP. Some of these models 
include the average distance between the depot and the delivery area, considering the 
case where the depot, which is a base for vehicles, is not at the center of the delivery 
area. Many previous studies have used the linehaul distance for such cases. However, 
they used simplifying assumptions and did not strictly reflect the shape and location of 
a region. This study aims to improve the approximation accuracy of the continuous 
approximation model using an analytically derived value of the average distance 
between a depot and the delivery service area. 

The rest of this paper is organized as follows. Section 2 provides a literature review 
of the VRP and TSP length calculations obtained using the continuous approximation 
approach. Section 3 presents the approximation result of the average distance between 
points and a rectangular area and its application to the continuous approximation model 
of the VRP. Section 4 describes the experimental design and estimation results. Finally, 
Section 5 concludes the paper. 

2 Literature review 

Most of the continuous approximation models for the TSP and VRP have been based 
on the study conducted by Beardwood et al. (1959) [1], who proved the result generally 
known as the BHH formula. For a set of n random points in a i-dimensional space ℝ!, 
the length of an optimal tour through n points 𝐷∗ satisfies: 

 lim
#→%

𝐷∗

#(#$%)/#
= 𝑘!𝑖

%
([𝑣(Ψ)]

%
# , (1) 

where the measure of the Lebesgue-measurable set 𝛹 is denoted by 𝑣(Ψ), and 𝑘! is a 
constant that depends on i. This formula is quite complicated, and Eilon et al. (1971) 
[6] showed a simple explanation of the planar case (𝑖 = 2), where S is planar area of 
and 𝑘 is used instead of  𝑘& : 

 𝐷∗

√#
→ 𝑘√𝑆        𝑖𝑓	𝑛 → ∞, (2) 

and if 𝑛 ∈ ℕ, Eq. (2) can be rewritten as:	

 𝐷∗ ≈ 𝑘√𝑛𝑆. (3) 

The value of 𝑘 is an unknown constant; nevertheless, it has been estimated in several 
previous studies. In the case of the Manhattan distance metric, Jaillet (1988) [11] 
estimated 𝑘 = 0.97, and Stein (1978) [4] estimated 𝑘 = 0.765 using the Euclidean 
distance metric. Cook et al. (2011) [3] showed that 𝑘 is correlated to 𝑛 and estimated it 
to be 0.625 ≤ 𝑘 ≤ 0.920 for n values	between 100 and 2000. 
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In addition, the BHH formula can be extended to a VRP that has capacitated vehicles 
based on the depot visit customers in the area. Daganzo (1984a) [4] proposed a simple 
formula for the optimal length of VRP 𝐷(∗  with m routes: 

 𝐷(∗ = 𝑘√𝑛𝑆 + 2𝑅𝑚, (4) 

where the value of m is obtained from the number of customers n and the maximum 
capacity of vehicle C (m = n/C); parameter 𝑘 = 0.57, and R is the distance from the 
depot to a random point in the area. In this formula, the first term refers to the tour 
length estimated by the BHH formula, and the second term is generally called the 
linehaul distance, which is the distance from the depot to the customer. The linehaul 
distance contributes to the estimation when the depot is not located at the center of the 
service area. Some studies have developed regression tests to estimate the TSP optimal 
length 𝐷∗ and VRP optimal length 𝐷(∗ . Chien (1992) [2] suggested this approximation 
for a depot located at the corner of the area. Let 𝐵 be the size of the boundary box 
enclosing all points; in this case, the total distance in the case of one truck 𝐷)∗ (TSP 
route length) can be expressed as: 

 𝐷)∗ = 0.67√𝑛𝐵 + 2.1𝑅. (5) 

Figliozzi (2008) [7] presented the following as a model of the VRP containing the 
linehaul distance: 

 𝐷(∗ = 𝑘 G#*(
#
H√𝑛𝑆 + 2𝑅𝑚, (6) 

where the parameter 𝑘 is estimated to be 0.62 ≤ 𝑘 ≤ 0.90, and average 𝑘 = 0.77 by linear 
regression, with a high accuracy for approximating 𝐷(∗ . 

Most previous studies have focused on the tour length, indicated by the first term, to 
improve the accuracy. Therefore, the assumption of the linehaul distance R is simplified. 
In Equation (4) proposed by Daganzo (1984a) [4], R is determined to check whether 
the depot 𝑜 is located in service area 𝒟 as follows:  

 

 𝑅 = KL√𝑆/6NL√2 + log	tan(3𝜋/8)N ≅ 0.382√𝑆,
𝑑Y

								(𝑜 ∈ 𝒟)
								(𝑜 ∉ 𝒟). (7) 

where 𝑑Y  is the distance from the depot 𝑜 to the center of gravity of the service area 𝒟. 
Moreover, Franceschetti et al. (2017) [8] used the closest point in the service area. 
Huang et al. (2013) [9] used the expected distance to reach the first point by taking the 
square root of the sum of the square of the expected longitudinal distance and the square 
of the expected transverse distance.  

However, the tour start point exists randomly in the service area, and we expect that 
calculating the average distance by considering the area and shape of the service area 
can help improve the estimation accuracy of 𝐷(∗ . For this purpose, we tested using two 
different linehaul distances for variable R in Daganzo’s model (4) and Figlilozzi’s 
model (6). One is the distance from the center of gravity of the area used in previous 
studies, and the other is the average distance between the point and the service area 
calculated using a probabilistic approach. 
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3 Approximation of the average distance between a point and 
an area 

In this section, we first describe the problem setting. Next, we present the methods 
for determining the distance between points and an area.  

3.1 Problem setting  

In the continuous approximation approach for TSP and VRP reported in previous 
studies, the service area was simplified to a rectangular shape (Daganzo, 1984a ; 
Franceschetti et al., 2017; Huang et al., 2013 [4, 8, 9]), circular/elliptical shape (Robusté 
et al., 2004[16]), and a ring-radial network (Newell and Daganzo, 1986; Jabail et al., 
2012[15, 10]). However, the shape of the area does not significantly affect the quality 
of the approximation (Daganzo, 1984b; Koshizuka, 2019[5, 13]). Thus, we model the 
service area as a rectangular shape for ease of numerical experiments and assume that 
the depot position is fixed and that the service area can be flexibly changed to account 
for the differences in the linehaul distance. We assume a rectangular service area 𝒟 
with horizontal length A and vertical length B. The n number of customers in 𝒟 are 
distributed in the form of a continuous uniform distribution and are picked up by m 
trucks based at depot o (Fig. 1). We calculate the average distance of a right triangle 
area using the model proposed by Koshizuka and Kurita (1991); Kurita (2013) [12, 14] 
and apply it to the rectangular regions.  

3.2 Model 

Let the right triangle 𝛿, shown in Fig. 2, be a depot o as an acute vertex. 𝛼 is the edge 
from o to the right angle a, and 𝛽 is the other edge from o to b. The probability density 
function 𝜑(𝑥) of the distance from 𝑜 to a point 𝑥 in 𝛿 can be expressed as: 

 

 𝜑(𝑥) = +(-)
/

 (8) 

 𝑆 = 0
&
`𝛽& − 𝛼& (9) 

Here, S is the size of 𝛿, and 𝐿(𝑥) is the perimeter of the fan shapes with 𝑥 radius and is 
obtained from cases shown in Figs. 2 (i) and (ii): 

  

 𝐿(𝑥) = c
(i)	𝑥 arccos 0

1
																																(0 ≤ 𝑥 ≤ 𝛼)

(ii)𝑥 Garccos 0
1
− arccos 0

-
H									(𝛼 < 𝑥 ≤ 𝛽)

		 (10) 

where arccos 𝛼/𝛽 is the angle 𝜃 between 𝛼	and	𝛽. Thus, the average distance 𝑑2∗  can 
be expressed as: 
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 𝑑345∗ = ∫ 𝑥16 𝜑(𝑥)d𝑥                   (11) 

Equation (11) can be reorganized as follows: 

 𝑑345∗ = )
7
l𝛽 + 0(

81(*0(,
𝑙𝑛 1:81(*0(

0(
n  (12) 

Subsequently, we can calculate the average distance to the rectangular area by 
combining the right triangles. There are four cases (I to IV in Fig. 3) depending on 
whether the location of o is within the horizontal or vertical extent of the area. Fig. 4 
shows the calculation method for the average distance between Cases I and IV.  

For a rectangular area 𝒟45;< , the average distance 𝑑∗  from o to 𝒟45;<  can be 
expressed as: 

 𝑑∗ = +=)*+,
/)*+,

 (13) 

where 𝑆45;<  is the size of 𝒟45;< , and the total distance 𝐿𝐷45;<  is calculated by 
combining the 𝐿𝐷 of the rectangles with o as its vertex. The intersection points of each 
edge and perpendicular line from depot o are e, f, g, and h. The total distance 𝐿𝐷4>?3 
from o to the rectangular area 𝒟4>?3 (upper left in Case I) with o as its vertex can be 
expressed as: 

 𝐿𝐷4>?3 = 𝑆4>3𝑑4>3∗ + 𝑆4@3𝑑4@3∗  (14) 

 
Fig. 1. Service area and depot. 

 

 
Fig. 2. Location of service area depot. 
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where the size of the right triangle is denoted by 𝑆4>3. In Case I, where o is in 𝒟45;<, 
𝐿𝐷45;< is obtained by summing the 𝐿𝐷 of the rectangles around o. In Cases II, III, and 
IV, e, f, g, and h are the intersections of the line extending each edge and perpendicular 
line, and we removed the unnecessary part (the gray area in Fig. 4 (IV)) from the 
rectangle with o as its vertex that is greater than 𝒟45;<. Thus, let the coordinates of a 
be (𝑎), 𝑎&), and 𝐿𝐷45;< can be expressed as in Eq. (15). 

 𝐿𝐷45;< =

⎩
⎪
⎨

⎪
⎧ (Ⅰ)	 	𝐿𝐷4>?3 + 𝐿𝐷>53A + 𝐿𝐷?3;B + 𝐿𝐷3A<B,
(Ⅱ)	 LD3A?< + L𝐷>53A − L𝐿𝐷3B?; + 𝐿𝐷>43BN
(Ⅲ)	 𝐿𝐷4>B3 + 𝐿𝐷>53A − L𝐿𝐷C?B3 + 𝐿𝐷?<3AN
(Ⅳ)	 𝐿𝐷>53A − L𝐿𝐷>43B + 𝐿𝐷?<3A − 𝐿𝐷?;3AN

 (15) 

We used 𝑑∗  as the linehaul distance R for models (4) and (6):  

 𝐷(∗ = 𝑘√𝑛𝑆 + 2𝑑∗ 𝑚  (4-1) 

 𝐷(∗ = 𝑘 G#*(
#
H√𝑛𝑆 + 2𝑑∗ 𝑚,  (4-2) 

In the next section, we compare the estimation accuracies of models (4) and (4-1), 
and (6) and (6-1) by numerical experiments.  

 
Fig. 3. Calculation condition for 𝑑∗. 

 

Fig. 4. Calculation method for 𝑑∗(Cases I and IV) 

Ⅲ
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4 Experimental setting and results 

In this section, we first explain the numerical experimental setup. Next, we evaluate 
the accuracy of the estimates obtained using the continuous approximation model. 

4.1 Experimental setting 

Numerical experiments were conducted to verify the accuracy of the continuous 
approximation model defined in Section 3. There are many instances of TSP and VRP, 
such as TSPLib, CVRPLib, and instance data from Solomon (1987)[20, 19, 17, 21]. 
For these examples, problems and solutions are available, including the spatial 
distribution of customers, vehicle capabilities, customer requirements, and customer 
time settings. However, in many instances, the depot location is included in the range 
of the demand distribution, and we cannot evaluate the difference in the linehaul 
distance, which is the subject of discussion in this study. Therefore, route optimizations 
with different area sizes and locations, demand patterns, and number of vehicles were 
obtained using mixed-integer linear programming (MILP). 

Table 1. Experimental conditions. 

Items  Values 

Area settings Area length (A, B) 
(10000,10000), (20000,10000) 
, (30000,10000) 

 
Depot location 

(25000, 25000), (50000, 25000) 
, (75000, 25000) 

Layout patterns 9 
Trucks 2, 3, 4, 5 
Demands 10, 20, 30, 40, 50 points per trucks 

 
Fig. 5. Layout pattern of the depot and service area. 

7 8
9

4 5 6

1 2 3

O

A

B
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Table 1 shows the details of the experimental conditions. Fig. 5 shows the layout 
pattern of the depot o and service area 𝒟. The area length is the length of the edges with 
𝒟 (Fig. 4, (A, B)); three types with different aspect ratios are assumed, and the position 
of o is changed on the basis of the aspect ratio of 𝒟. The area layout has nine patterns 
(Fig. 5, Nos. 1 to 9) for the layout of o and 𝒟. In the case of No. 9, o is located at the 
centroid of 𝒟, which is the pattern with the shortest linehaul distance; conversely, in 
case No. 1, it is the pattern with the farthest distance from o. The number of trucks is 
assumed to range from 1 to 5, and the number of demands is assumed to range from 10 
to 50 per truck, which is the same as the truck capacity. 

We solved 540 instances (three area settings, nine layouts, four trucks, and five 
demands) 10 times by randomly changing the demand points within the area.  

We used LocalSolver 9.5 to solve the VRP, and the CVRP algorithms for the 
problems that have been tested for performance by LocalSolver [22]. The 
computational tests were performed on two Windows 10 machines (3.5 GHz Intel Core 
i9 processor, with 64 GB RAM; 2.5 Xeon GHz processor with 64 GB RAM). The 
maximum running time was set to 300 s. However, for the pattern with the largest 
number of combinations (five trucks, demand 50 per truck), the optimality gap with the 
upper bound was less than 5%.  

4.2 Results 

To evaluate the prediction accuracy, the R-square value, root-mean-squared error 
(RMSE), and mean absolute percentage error (MAPE) were used. The RMSE and 
MAPE were calculated as follows: 

 𝑅𝑀𝑆𝐸 = x)
#
∑ (𝑦! − 𝑓!)!

& (16) 

 𝑀𝐴𝑃𝐸 = )66
#
∑ }(D#*A#)

D#
}!  (17) 

where the actual distance, which is calculated by MILP for instance i, is denoted 𝑦!, 
and the estimated distance is denoted by 𝑓!. The RMSE indicates the absolute error 
value for a specific distance. However, the longer the total distance, the greater the 
error. Therefore, the MAPE is used to determine the relative error. 

Table 2. Model fit comparison. 

Model k   R2 RMSE MAPE 

(4) 0.570    0.995  10087.0  3.4% 
(4-1) 0.529    0.998  6830.2  2.5% 
(6) 0.570    0.995  9944.8  3.5% 

(6-1) 0.549    0.998  6883.5  2.5% 
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Table 2 presents the fitting results for the linehaul distance and average distance. In 
the estimation, for model (4), we used 𝑘 = 0.57, the value given in the original paper, 
and for model (6), we used the same value. In Figliozzi (2008), k was fitted with real 
data (Solomon (1987)), and the conditions of the numerical experiments were different 
from those in this study. For models (4-1) and (6-1), which are the focus of this study, 
parameter k was fitted using the maximum likelihood estimation method. In Table 2, 
all the models have good 𝑅&	values. However, models (4-1) and (6-1), which use a 
continuous approximation term for the linehaul distance, have a better RMSE and 
MAPE performance than models (4) and (6). 

Table 3. Model fit comparison by number of trucks. 

  RMSE         MAPE       
  trucks         trucks       
  2 3 4 5   2 3 4 5 
Model                   

(4) 7794.2  9350.5  10723.6  11992.3    3.9% 3.5% 3.1% 2.9% 
(4-1) 6870.8 6627.1 6694.2 7118.0  3.6% 2.6% 2.0% 1.8% 
(6) 8347.9 9500.4 10356.9 11330.7  4.4% 3.7% 3.1% 2.9% 

(6-1) 6775.1 6688.2 6838.3 7220.4 
 

3.7% 2.7% 2.1% 1.8% 

 
Next,wecompare the performance of each model based on the number of trucks and 

the layout of the area and depot to analyze the factors that can help improve the 
accuracy. Table 3 shows the comparison results of the number of trucks. The number 
of trucks is proportional to the linehaul distance, as shown in the second term of each 
model. Therefore, the greater the number of trucks, the better the RMSE and MAPE 
performance. However, the difference is highest when the number of vehicles is four, 
and above that, the performance tends to saturate.  

 
Fig. 6. Model fit comparison by layout pattern of depot and service area (Models (4) and 

(4-1)) 

RMSE MAPE RMSE MAPE RMSE MAPE
(4) 9534.3 2.3 % (4) 8803.4 3.3 % (4) 8210.7 6.1 %

(4-1) 5945.0 1.4 % (4-1) 6063.7 2.3 % (4-1) 9031.0 7.1 %

RMSE MAPE RMSE MAPE RMSE MAPE
(4) 9584.3 2.2 % (4) 8055.7 2.9 % (4) 11613.6 6.5 %

(4-1) 5957.1 1.3 % (4-1) 5559.7 2.0 % (4-1) 6283.2 3.4 %

RMSE MAPE RMSE MAPE RMSE MAPE
(4) 8704.2 1.8 % (4) 6474.8 1.9 % (4) 8522.0 3.4 %

(4-1) 5655.3 1.1 % (4-1) 5010.0 1.6 % (4-1) 7206.8 2.8 %

5 6

7 8 9

1 2 3

4
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Fig. 6 shows a comparison of the RMSE and MAPE values of models (4) and (4-1) 
for different area layouts, as shown in Fig. 5. The performance of Nos. 1 to 8, which 
are the area layouts away from the depot, is improved. In particular, No. 6 exhibits the 
best performance. Fig. 7 shows the reason for this. This figure shows the difference in 
the distance from the depot to the center of gravity 𝑑Y  or rectangular areas 𝑑∗  when the 
depot is located at (75000, 25000), and the area edges A = 30000 and B = 10000 (thus, 
the aspect ratio is 3.0) are moved. When the area does not include the depot (in the red 
frame), a large difference value is located at No. 6. In other words, the lower the 𝑑Y 
value and the longer the edge that intersects the line, the greater the error. 

In other areas, the RMSE was in the range of 1300–3600, and the MAPE values were 
reduced by 0.3%–1.0%. However, in the region containing the depot (No. 9), the 
performance is worse because the adjustment of the tour length is sufficient and the 
linehaul distance is over-adjusted. These results indicate that our proposed method of 
calculating the linehaul distance is useful for regions where the depot is far from the 
service area, contributing to the improvement in the estimation accuracy. 

5 Conclusions 

In this study, we analyzed approximations of the linehaul distance between the depot 
and rectangular service area to improve the accuracy of estimating the total VRP 
distance. The VRP approximation formula is useful for the strategic and planning 
analyses of transportation and logistics problems, where the number and location of 
customers change daily. We defined a continuous approximation formula to find the 
average distance of a right triangle with the depot as an acute angle and the average 
distance between a point and a rectangular region at any given location. This 
approximation formula was used as the linear distance in the VRP model. In addition, 
we computed the optimal route for many instances with different demands, number of 

 
Fig. 7. Mapping of difference values between 𝑑! and 𝑑∗ . 
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trucks, and locations that can be considered in the VRP approximation model. The 
numerical solutions were estimated using the approximation model. The results showed 
an improvement in the accuracy of the approximation equation for service areas far 
from the depot. Our results can be applied when planning deliveries, for cases where 
the depot is located at the edge of the city and outside the delivery area and to the 
planning of area segmentation represented by the strip strategy (e.g., Daganzo (1984a), 
Franceschetti et al. (2017)[4, 8]). The linehaul distance approximation is also useful for 
estimating the distance traveled by cabs and kickboards without tours. In the future, we 
plan to apply the developed model to analyze the above problems, while considering 
the time constraints of the VRP and the effects of area segmentation on the delivery 
efficiency. 

Acknowledgments 

This work was supported by JSPS KAKENHI Grant Numbers JP21K14314 and 
Obayashi Foundation. We appreciate their support. 

References 

1. Beardwood, J., Halton, J. H., Hammersley, J. M.: The shortest path through many points. 
Mathematical Proceedings of the Cambridge Philosophical Society, 55(4), 299–327 (1959). 

2. Chien, T. W.: Operational estimators for the length of a traveling salesman tour. Computers 
and Operations Research, 19(6), 469–478 (1992). 

3. Cook, W. J., Applegate, D. L., Bixby, R. E., Chvátal, V.: The Traveling Salesman Problem. 
Princeton University Press (2011). 

4. Daganzo, C. F.: The distance traveled to visit N Points with a maximum of C Stops per 
vehicle: An analytic model and an application. Transportation Science, 18(4), 331–350 
(1984a). 

5. Daganzo, C. F.: The length of tours in zones of different shapes. Transportation Research 
Part B, 18(2), 135–145 (1984b). 

6. Eilon, S., Watson-Gandy, C. D. T., Christofides, N.: Distribution Management: 
Mathematical Modelling and Practical Analysis. Charles Griffin, London (1971). 

7. Figliozzi, M. A.: Planning approximations to the average length of vehicle routing problems 
with varying customer demands and routing constraints. Transportation Research Record, 
2089(1) ,1–8 (2008). 

8. Franceschetti, A., Honhon, D., Laporte, G., Woensel Van, T. V., Fransoo, J. C.: Strategic 
fleet planning for city logistics. Transportation Research. Part B, Methodological, 95, 19–
40 (2017). 

9. Huang, M., Smilowitz, K. R., Balcik, B.: A continuous approximation approach for 
assessment routing in disaster relief. Transportation Research. Part B, Methodological, 50, 
20–41 (2013). 

10. Jabali, O., Gendreau, M., Laporte, G.: A continuous approximation model for the fleet 
composition problem. Transportation Research. Part B, Methodological, 46(10), 1591–1606 
(2012). 

11. Jaillet, P.: A priori Solution of a Traveling Salesman Problem in which a Random Subset of 
the Customers Are Visited. Operations Research, 36(6), 929–936 (1988). 

93



12 

12. Koshizuka, T., Kurita, O.: Approximate formulas of average distances associated with 
regions and their applications to location problems. Mathematical Programming, 52(1–3), 
99–123 (1991). 

13. Koshizuka, T.: Integral Geometry for Applications - Measures of Figures. Kindai Kagaku 
Sha (2019). (in Japanese). 

14. Kurita, O.: Mathematical Models of Cities and Regions - Mathematical Methods in Urban 
Analysis. Kyoritsu Shuppan Co., Ltd (2013). (in Japanese). 

15. Newell, G. F., Daganzo, C. F.: Design of multiple-vehicle delivery tours—I a ring-radial 
network. Transportation Research Part B, 20(5), 345–363 (1986). 

16. Robusté, F., Estrada, M., López-Pita, A.: Formulas for estimating average distance traveled 
in vehicle routing problems in elliptic zones. Transportation Research Record, 1873(1), 64–
69  (2004).  

17. Solomon, M. M.: Algorithms for the vehicle routing and scheduling problems with time 
window constraints. Operations Research, 35(2), 254–265 (1987). 

18. Stein, D. M.: An asymptotic, probabilistic analysis of a routing problem. Mathematics of 
Operations Research, 3(2), 89–101 (1978). 

19. CVRPLIB, http://vrp.atd-lab.inf.puc-rio.br/index.php/en/, last accessed 2022/01/20. 
20. TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/, last accessed 

2022/01/20. 
21. The instances of Solomon, http://web.cba.neu.edu/~msolomon/problems.htm, last accessed 

2022/01/20. 
22. Benchmark–Capacitated vehicle routing problem (CVRP), Localsolver, 

https://www.localsolver.com/benchmarkcvrp.html, last accessed 2022/01/20. 
 
 

94



Optimal Delivery Area Assignment for 
the Capital Vehicle Routing Problem 

 Based on a Maximum Likelihood Approach 

MARUYAMA Junya1[0000-0002-6703-3259] , HONMA Yudai2[0000-0002-6458-0767] ,  

HASEGAWA Daisuke3[0000-0002-4854-6665] , TOKI Soma4[0000-0003-3603-3798]  

and SHIONO Naoshi5[0000-0003-0913-821X] 

1 The University of Tokyo, Bunkyo, Tokyo, Japan 
juntama0826@g.ecc.u-tokyo.ac.jp 

2The University of Tokyo, Bunkyo, Tokyo, Japan 
yudai@iis.u-tokyo.ac.jp 

3The University of Tokyo, Bunkyo, Tokyo, Japan 
hasega60@iis.u-tokyo.ac.jp 

4 Tokyo Gas Co., Ltd., Minato, Tokyo, Japan 
toki.s@tokyo-gas.co.jp 

5 Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan  
na-shiono@ic.kanagawa-it.ac.jp 

Abstract. In this study, we constructed an optimization model for the maximum 
likelihood estimation of delivery areas from a capacitated vehicle routing prob-
lem. The aim is to develop a method that combines the advantages of two meth-
ods of delivery planning: the efficiency of the routing software-based method and 
the flexibility of the area-in-charge method. We first conduct computer experi-
ments to derive the optimal cycling plan for each stochastic demand pattern. We 
then solve the optimal delivery area assignment that is globally consistent with 
the data from these experiments. We focused on whether the optimal route for 
each demand pattern was contained in the same area and found the assigning area 
that maximized the probability. This model is designed for daily use because it is 
an easy-to-interpret area map, while the optimization of the circulation problem 
is solved using computers in advance. In experiments using the data, we con-
firmed that the model can provide correct area creation.  

Keywords: Delivery plan, Area assignment, Maximum likelihood estimation. 

1 Introduction 

Planning an effective delivery route is one of the most important topics discussed in 
logistics, such as postal delivery services and meter readings. In recent years, its im-
portance has increased. Figure 1 shows the distribution of customers for gas cylinder 
delivery. About 5,000 customers exist. Distributors deliver 30 to 70 cylinders every 
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day. That is, daily demand points are stochastic. For distributors, there are mainly two 
effective strategies for stochastic delivery route planning: one is to find the best route 
through routing software, and the other is to assign the driver’s area to each driver. 

 
Fig. 1. Demand points  

The routing software-based method of determining the optimal route is more effi-
cient than the method of assigning a driver’s area. The method of searching for the 
optimal route has been studied as the Vehicle Routing Problem (VRP). On the other 
hand, solving the VRP is computationally demanding, so it is not practical to find the 
optimal route. In actual delivery, distributors face sudden customer changes, such as a 
customer’s request due to running out of gas or bad weather. In these cases, a manager 
change driver’s scheduling by hang as applying the software takes much time. 

Alternatively, in daily delivery, plans are often made based on the area assignment 
for each driver. For many distributors, these areas are determined by discussions among 
drivers or by the experience of managers without any actual quantitative analysis. As-
signment areas for each driver are often inefficient. On the other hand, such a delivery 
plan has the advantage of being able to respond flexibly to sudden changes in the de-
livery destination or the absence thereof. Such irregular events are common in everyday 
delivery. 

As shown above, the two methods have trade-offs in terms of computational time, 
traveling time, and flexibility in actual daily delivery when we make a delivery route 
plan. 
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Previous attempts in logistics have been made to assign areas appropriately. In the 
planning and strategic phases, a successive approximation approach with simple as-
sumptions (uniform random demand distribution, simple shapes) estimated the impact 
of zoning. Newell and Daganzo [1] analyzed the effect on distance when a rectangular 
area was divided into equal parts and found the optimal number of divisions. Applying 
these approaches, Ouyang [2] proposed an algorithm in which geometric features de-
termine the vehicle routing zone for any demand distribution. In a more practical ap-
proach, Galvão et al. [3] focused on the density distribution of demand and tried to 
determine the area using the Voronoi diagram approach. They relaxed the predeter-
mined boundaries of the partition and iteratively modified them until they converged to 
minimize the distance traveled by vehicles. Ayala et al. [4] developed a demand point 
allocation scheme that minimizes the distance from the depot to the network connecting 
the demand point to the depot or the demand points to each other. Zhong et al. [5] di-
vided the field into areas by preparing cells, which are sets of demand points, and con-
sidered the optimal clustering of cells by adding a cost to each. In recent research, Sung 
et al. [6] used a meta-heuristics approach to zoning aerial vehicles by bearing from 
depots to demand points. However, there is no study that solves the VRP for the entire 
field and naturally divides the distributor’s area into driver’s areas. 

The purpose of this research is to propose a new optimization model to find the area 
assignment for the capacitated vehicle routing problem, which maintains both effi-
ciency (by calculating the optimal route) and flexibility (by defining the area assign-
ment). To achieve this purpose, we first conducted computer experiments to derive the 
optimal cycling plan for each stochastic demand pattern. We then identified the optimal 
delivery area assignment that was globally consistent with the data from these experi-
ments. We introduce a clustering method in the work of Honma et al [7], which is a 
maximum likelihood estimation of areas from transition information. 

One of the features of this research is that we aimed to produce output in the form 
of a map for use in actual delivery scenarios. It is frequently difficult to handle and 
calculate complex mathematical models in the field. Even in such cases, the output in 
the form of a map provides an easy and intuitive way to use the results of this research. 
In addition, because of the map format, the delivery personnel do not have to signifi-
cantly alter what they have been doing. Thus, it can be said that the output of this re-
search can achieve efficiency with less effort.  

In addition, by using area assignment, the system can handle demands that occur 
randomly every day. In actual delivery, demand occurs randomly among a number of 
potential demand points, and it is necessary to create a delivery plan that corresponds 
to the demand. This is much easier to operate than finding a solution through software. 

This paper is organized as follows. In Section 2, we formulate the problem. We pro-
pose a mathematical model for achieving efficient area assignment, which is the objec-
tive of this study and is estimated by taking the maximum likelihood from the optimal 
route and constructing a mathematical model for assigning an area. In Section 3, we 
introduce the data for the computer experiments used to test the certainty of the model, 
and in Section 4, we verify the model use actual data. Section 5 discusses the model 
based on the results of Section 4, and finally, Section 6 provides conclusions and future 
perspectives for further study. 
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2 Formulation 

2.1 Our concept 

In this study, we deal with the capacitated Vehicle Routing Problem (CVRP). To assign 
the optimal area for each driver, we iteratively calculate the optimal traveling routes on 
software under stochastic demands and then estimate the assignment areas based on the 
solutions to be as consistent as possible with the computer experiments. This means 
that we assign a label of area information for each demand point. Thereby, this problem 
can be rephrased as the problem of labeling area information at the demand points on 
the same circular route in computer experiments in as few areas as possible. 

First, we present the conditions for achieving this objective mathematically. In this 
study, we consider an area assignment that satisfies the following conditions that an 
area is as consistent as possible. 

 
i. Demand points that belong to the same area should be delivered by the same 

vehicle as much as possible. 
ii. Demand points that belong to different areas should be delivered by differ-

ent vehicles as much as possible. 
 
These show the properties that an optimal area assignment should satisfy. For these 

properties, we conduct a large number of computer experiments because we assume 
that daily demand points are random. Therefore, we apply probabilities i and ii. An area 
assignment that satisfies these properties is achieved by combining the following pro-
cedures, each corresponding to the above conditions: 

 
i'. Maximize the probability of delivering any given demand points in the same 

area with the same vehicle 
ii'. Minimize the probability of delivering any given demand points in different 

areas with the same vehicle 
 
By achieving these conditions at the same time, the solution should be obtained such 

that the same drivers deliver as much as possible within the same area, conversely, the 
same drivers do not deliver as much as possible in different areas. When solving our 
area assignment problem, a constraint is employed in that each vehicle has the same 
capacity. This is to keep the quantity transported by each delivery vehicle constant. The 
optimization problem is formulated as a maximum likelihood estimation by partitioning 
a field as described above. 

2.2 Formulation based on demand points 

Our area assignment problem is solved as a quadratic assignment problem in terms of 
the label of area information [8].  
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Let 𝐼𝐼 be the set of demand points and 𝐴𝐴 be the set of areas for all drivers. The pres-
ence or absence of delivery to demand points 𝑖𝑖(∈ 𝐼𝐼) and 𝑗𝑗(∈ 𝐼𝐼) is determined by re-
peated computer experiments. We now introduce a 0-1 variable as follows: 

                 𝑧𝑧𝑖𝑖𝑖𝑖 = �1         (If demand point i belongs to area 𝑖𝑖 (∈ 𝐴𝐴))
0          (otherwise)                                                           

 (1) 

where the number of areas is determined by the number of vehicles used for daily de-
livery. The purpose of this study is to divide the entire target field into areas without 
overlapping by multiple areas and to assign a demand point to one area. Then, the fol-
lowing relationship is established: 

 ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 = 1                     ∀𝑖𝑖 ∈ 𝐼𝐼 (2) 

Let 𝐾𝐾 be the set of trials for computer experiments and 𝐼𝐼𝑘𝑘 be the set of demand points 
at which demand points occur in a certain trial 𝑘𝑘(∈ 𝐾𝐾). We denote by 𝐶𝐶(𝐼𝐼𝑘𝑘) the set of 
functions of 𝐼𝐼𝑘𝑘 that extracts from 𝐼𝐼𝑘𝑘 every combination that takes two demand points. 
Then, 𝑧𝑧𝑖𝑖𝑘𝑘𝑧𝑧𝑗𝑗𝑘𝑘 indicates the presence or absence of a path connecting any demand points 
𝑖𝑖 and 𝑗𝑗 belonging to an area 𝑖𝑖(∈ 𝐴𝐴) in a certain trial 𝑘𝑘(∈ 𝐾𝐾). The total number of paths 
between demand points belonging to the same area in all trials is expressed as follows: 

 ∑ ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑗𝑗)∈𝐶𝐶(𝐼𝐼𝑘𝑘)𝑖𝑖∈𝐴𝐴  (3) 

The path across the different areas, except for the upper one, can be expressed as fol-
lows: 

 ∑ ∑ ∑ (1 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖)𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑗𝑗)∈𝐶𝐶(𝐼𝐼𝑘𝑘)𝑖𝑖∈𝐴𝐴  (4) 

In addition, we also introduce the following 0-1 variables: 

 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 = �
1(If demand points i and j are delivered 

by the same vehicle in trial 𝑘𝑘(∈ 𝐾𝐾))
0(otherwise)                                                       

 (5) 

Using these variables, the total number of routes delivered to the same vehicle in each 
area can be shown as follows: 

 ∑ ∑ ∑ 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 × 𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑗𝑗)∈𝐶𝐶(𝐼𝐼𝑘𝑘)𝑖𝑖∈𝐴𝐴  (6) 

Similarly, the total number of deliveries between any demand points in different areas 
by the same vehicle can be shown as follows: 
 

 ∑ ∑ ∑ 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 × �1 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑗𝑗𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑗𝑗)∈𝐶𝐶(𝐼𝐼𝑘𝑘)𝑖𝑖∈𝐴𝐴  (7) 

The probability 𝑓𝑓𝑖𝑖𝑖𝑖 of delivering to any demand point in the same area with the same 
vehicle and the probability 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 of delivering to any demand point in a different area 
with the same vehicle, which are the conditions that appeared in Section 2.1, can be 
expressed using the above variables as follows: 
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 𝑓𝑓𝑖𝑖𝑖𝑖 =
∑ ∑ ∑ 𝑠𝑠𝑖𝑖𝑖𝑖

𝑘𝑘×𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑖𝑖)∈𝐶𝐶�𝐼𝐼𝑘𝑘�𝑖𝑖∈𝐴𝐴

∑ ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑖𝑖)∈𝐶𝐶�𝐼𝐼𝑘𝑘�𝑖𝑖∈𝐴𝐴
 (8) 

 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 =
∑ ∑ ∑ 𝑠𝑠𝑖𝑖𝑖𝑖

𝑘𝑘×�1−𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑖𝑖)∈𝐶𝐶�𝐼𝐼𝑘𝑘�𝑖𝑖∈𝐴𝐴

∑ ∑ ∑ (1−𝑧𝑧𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖)𝑘𝑘∈𝐾𝐾(𝑖𝑖,𝑖𝑖)∈𝐶𝐶�𝐼𝐼𝑘𝑘�𝑖𝑖∈𝐴𝐴
 (9) 

Furthermore, in this mathematical optimization, we set the constraint for capacity, i.e., 
the number of demand points belonging to each area, using the number of vehicles 𝑁𝑁 
as follows. The purpose of this is to adjust the delivery volume of each vehicle for 
practical applications: 

 �|𝐼𝐼|
𝑁𝑁
� ≤ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ �|𝐼𝐼|

𝑁𝑁
�                     ∀𝑖𝑖 ∈ 𝐴𝐴 (10) 

Since satisfying conditions i and ii in Section 2.1 simultaneously means minimizing 
𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, the following mathematical optimization problem is established: 

 𝑚𝑚𝑖𝑖𝑚𝑚           𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜                                                                          (11) 

 𝑠𝑠. 𝑡𝑡.            ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴 = 1                                                       ∀𝑖𝑖 ∈ 𝐼𝐼 (12) 

                     �|𝐼𝐼|
𝑁𝑁
� ≤ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 ≤ �|𝐼𝐼|

𝑁𝑁
�                                         ∀𝑖𝑖 ∈ 𝐴𝐴 (13) 

                          𝑧𝑧𝑖𝑖𝑖𝑖 , 𝑠𝑠𝑖𝑖𝑗𝑗𝑘𝑘 ∈ {0,  1}                      ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼,∀𝑖𝑖 ∈ 𝐴𝐴,∀𝑘𝑘 ∈ 𝐾𝐾 (14) 

2.3 Formulation based on zones 

In Section 2.2, we formulated the equation based on the demand points. However, there 
are two issues. First, quadratic assignment problems with over 5,000 points cannot be 
solved in a short time. Second, considering practical applications, it is more convenient 
for the same vehicles to visit the same town. 

For these reasons, we introduce “zone” aggregated demand points. The concept of 
the zone is illustrated in Figure 2. The zones are sets of demand points. The number of 
demand points for each zone is nearly equivalent. For example, zones are created by 
zip code. In addition, zones can be obtained by solving the p-median problem [9]. In 
this study, 100 zones are created, and each demand point is assigned to one zone. In the 
previous section (2.2), we formulated the equation in such a way that demand points 
are allocated to areas, and in this section (2.3), we formulate it in such a way that zones 
are allocated to areas.  
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Fig. 2.  Concept of zone 

Let 𝑃𝑃 be the set of zones. To propose a formulation that includes zones, we first 
introduce 𝑝𝑝(∈ 𝑃𝑃), and then we introduce a 0-1 variable that indicates whether zone p 
belongs to area 𝑖𝑖(∈ 𝐴𝐴): 

 𝑚𝑚𝑝𝑝𝑖𝑖 = �1      (If demand zone p belongs to area 𝑖𝑖 (∈ 𝐴𝐴))
0      (otherwise)                                                             (15) 

As shown in Section 2.2, we denote by 𝐶𝐶(𝑃𝑃)the set of functions of 𝑃𝑃 that extracts from 
𝑃𝑃 every combination that takes two demand points. At this time, let 𝑛𝑛𝑝𝑝𝑝𝑝𝑘𝑘  be the number 
of combinations such that one demand point is in zone 𝑝𝑝 and another is in zone 𝑞𝑞  
among all combinations 𝐶𝐶(𝐼𝐼𝑘𝑘) of demand points 𝐼𝐼𝑘𝑘 visited in trial 𝑘𝑘. The total number 
of deliveries in zones 𝑝𝑝 and 𝑞𝑞 of the same area 𝑖𝑖 patrolled in a certain trial 𝑘𝑘 can be 
expressed as 𝑛𝑛𝑝𝑝𝑝𝑝𝑘𝑘 × 𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑝𝑝𝑖𝑖 , and the total number of deliveries within that same area is: 

 ∑ ∑ ∑ 𝑛𝑛𝑝𝑝𝑝𝑝𝑘𝑘 × 𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑝𝑝𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴  (16) 

As in Section 2.2, the total number of routes that cross different areas is as follows: 

 ∑ ∑ ∑ 𝑛𝑛𝑝𝑝𝑝𝑝𝑘𝑘 × (1 − 𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑝𝑝𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴  (17) 

Furthermore, let 𝑡𝑡𝑝𝑝𝑝𝑝𝑘𝑘  be the number of combinations of all combinations 𝐶𝐶(𝐼𝐼𝑘𝑘)  of 
demand points 𝐼𝐼𝑘𝑘 visited in trial 𝑘𝑘, where one demand point is in zone 𝑝𝑝 and the other 
in zone 𝑞𝑞, and where they are serviced by the same vehicle. Among those whose routes 
are in the same area, the total number delivered by the same vehicle is expressed: 

 ∑ ∑ ∑ 𝑡𝑡𝑝𝑝𝑝𝑝𝑘𝑘 × 𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑝𝑝𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴  (18) 

In the same way as in Section 2.2, those items whose route is not in the same area, and 
which are delivered by the same vehicle, are shown as follows: 

Area Zone

101



8 

 ∑ ∑ ∑ 𝑡𝑡𝑝𝑝𝑝𝑝𝑘𝑘 × �1 − 𝑚𝑚𝑝𝑝𝑖𝑖𝑚𝑚𝑝𝑝𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴  (19) 

Using the above, the 𝑓𝑓𝑖𝑖𝑖𝑖 of delivering to any zone in the same area with a same vehicle 
and the probability and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 of delivering to any zone in a different area with the same 
vehicle, which replace demand points to zones as they appeared in Section 2.2, can be 
shown as follows: 

 𝑓𝑓𝑖𝑖𝑖𝑖 =
∑ ∑ ∑ 𝑜𝑜𝑝𝑝𝑝𝑝𝑘𝑘 ×𝑥𝑥𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴

∑ ∑ ∑ 𝑖𝑖𝑝𝑝𝑝𝑝𝑘𝑘 ×𝑥𝑥𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴
 (20) 

 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 =
∑ ∑ ∑ 𝑜𝑜𝑝𝑝𝑝𝑝𝑘𝑘 ×�1−𝑥𝑥𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴

∑ ∑ ∑ 𝑖𝑖𝑝𝑝𝑝𝑝𝑘𝑘 ×(1−𝑥𝑥𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑖𝑖�𝑘𝑘∈𝐾𝐾(𝑝𝑝,𝑝𝑝)∈𝐶𝐶(𝑃𝑃)𝑖𝑖∈𝐴𝐴
 (21) 

When the number of zones is constant, the number of demand points will also be con-
stant, thus guaranteeing that the capacity of each zone is constant. Using this fact, and 
adding that the number of each zone should be as equal as possible, so that  𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 
is maximized, the mathematical optimization problem can be shown as follows: 

 𝑚𝑚𝑖𝑖𝑚𝑚           𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜                                                                       (22) 

 𝑠𝑠. 𝑡𝑡.            ∑ 𝑚𝑚𝑝𝑝𝑖𝑖𝑖𝑖∈𝐴𝐴 = 1                                             ∀𝑝𝑝 ∈ 𝑃𝑃 (23) 

                   �|𝑃𝑃|
𝑁𝑁
� ≤ ∑ 𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝∈𝑃𝑃 ≤ �|𝑃𝑃|

𝑁𝑁
�                            ∀𝑖𝑖 ∈ 𝐴𝐴 (24) 

                           𝑚𝑚𝑝𝑝𝑖𝑖 ∈ {0,  1}                                  ∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑖𝑖 ∈ 𝐴𝐴 (25) 

3 Data Preparation 

The optimization problem formulated in Section 2.3 was solved using the following 
experimental data. We considered the distribution of demand points as shown in Figure 
1. There are 5,000 candidate demand points. There is only one depot in the upper left, 
and all delivery vehicles originate from here. 
First, we randomly select demand points in accordance with the number of vehicles and 
the number of demand points delivered by one vehicle in one day. This means the dis-
tribution of demand for a hypothetical day. Next, for these demand points, we solve the 
CVRP using the LocalSolver package [10]. This is equivalent to calculating the optimal 
route minimizing the total distance for one day's demand distribution. We repeat these 
procedures for 300 trials, which means one year of delivery operations. In this way, 
computational experiments were conducted to find the optimal route for a year of de-
mand. Thus, we obtained 300 patterns of hypothetical optimal delivery plans as com-
puter experiments for solving the optimal problem. 
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Fig. 3. Assembly of routes 

By overlaying these computer experiment data, we can intuitively grasp the area distri-
bution as shown in Figure 3. This figure shows a case with six delivery vehicles, and 
routes delivered by the same vehicle are shown in the same color. Such areas are created 
by the maximum likelihood estimated in (22)-(25). 

4 Results 

The following are the results of obtaining the solution using LocalSolver 10.5[11] with 
the equation in Section 2.3 and the data prepared in Section 3. The area assignment of 
demand points for the cases of 6 and 14 vehicles is shown in Figures 4 and 5 so that the 
same area has the same color. In addition, the white dot in the figures is the depot (start-
ing point) of the delivery. 

103



10 

 
Fig. 4. Area solve (6 cars = 6 areas) 

 
Fig. 5. Area solve (14 cars = 14 areas) 

5 Discussion 

From the results in the previous section, we can see that the formulation of this study 
allows us to make a clear assignment of areas, thus confirming that the area assignment 
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was reasonable. These results can be obtained regardless of the number of vehicles. 
Therefore, we can say that the formulation and constraints used in the process are 
appropriate. On the other hand, since we imposed a very strict condition on the capacity, 
it is necessary to examine how it changes when this condition is relaxed.  

In this area assignment, the area spreads radially. This is an obvious solution since 
all the computer experiments start from the depot, but it also works positively in terms 
of efficiency in the actual delivery scenarios. In this sense, we can say that we have 
succeeded in creating a map that is suitable for the actual delivery scenarios.  

6 Conclusion 

In this study, we developed a model for the maximum likelihood estimation of area 
assignment from optimal routes. From the results, it can be inferred that the model is 
appropriate. In the next step, it will be necessary to verify whether the area assignment 
obtained in this study is superior in terms of efficiency to the currently used delivery 
areas. 
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1 Introduction

During the last few years, the rapid development in low-power semiconductor technology, in
combination with the wide-adoption of mobile phone platforms, has fostered an astonishing growth
of wearables, which have become especially relevant in the sport practice. The use of MEMS in
sport activity represents an efficient way of monitoring, capable of generating a huge amount of
data that can be further processed [1]. In addition, Machine Learning algorithms can leverage such
datasets to develop supervised learning applications, such as classifiers and regressors, related to
sport activities.

In this work, a comparison of Machine Learning algorithms for padel shot classification is
proposed. Padel has recently experienced significant worldwide growth. For instance, in Spain, the
number of practitioners has doubled in less than 9 years, surpassing tennis in 2020 and becoming
one of the most popular sports at the national level4. Therefore, this paper aims to combine two
growing disciplines: Machine Learning and padel.

The main contributions of this work are:

– The creation of the first padel shot dataset in the literature.
– The development of a padel shot classifier with the capacity to distinguish 13 different strokes.

2 Related Work

Shot classification has been proposed for other racket sports such as tennis and table tennis.
In [2], a comparative study of table tennis strokes using Deep Learning is presented. The dataset
employed included 1570 shots from 16 participants. Regarding tennis studies, in [3] the authors
present a classification system for tennis shots. The system is developed by using two sensors placed,
respectively, on the wrist and waist of the athlete. Up to four shot types have been classified and
the achieved results reached a 99.25% accuracy. Similarly, in [4], a classification of 9 different tennis
shots is performed using Machine Learning with a dataset generated by 19 different athletes. In
this work, a total of 28.582 strokes were collected using an Inertial Measurement Unit (IMU)
placed on the wrist of the athletes. Six different Machine Learning models were trained, among
which the cubic-kernel Support Vector Machine (SVM) showed the best performance, reaching
a 93.2% accuracy. Although previous works on racket sports are promising, to the best of the
authors knowledge this is the first work focused on padel shot classification. Furthermore, the
dataset created is the first one related to padel sport that is available in the literature.

3 Padel dataset

The first challenge regarding the classification of padel tennis shots lies in the generation of
a representative dataset from experimental data. As the dataset is to be used for training and

4 Data of sport practitioners in Spain are avaliable in https : //www.csd.gob.es/es/federaciones − y −
asociaciones/federaciones− deportivas− espanolas/licencias.
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testing supervised learning algorithms, the different shots are required to be properly labeled. A
set of experiments have been carefully designed aiming at an efficient generation, processing and
labeling of the experimental data. The procedure has been divided into three different stages:

1. Data acquisition: Each participant has performed the shots in 13 separate tests5, each of
them consisting on iteratively repeating a single type of shot. During the whole test, the players
have worn the data acquisition device in the dominant hand, responsible for measuring both
the velocities and accelerations experienced by the player’s hand during a shot. The device
consists of a LSM9DS1 IMU, which is included in the Sense Hat of the Raspberry Pi (see
Figure 1a), and fixed into a tailored 3D printed case designed to ergonomically fit the player’s
wrist. Once activated, the device system collects data from the player on a continuous basis
at a fixed rate of 20 Hz. It is relevant to note that, after the raw data has been captured, it
consists of different time series containing a sequence of independent shots, and thus they are
required to be identified and segmented.

2. Shot detection and segmentation: The shot detection algorithm developed is based on
speed and acceleration thresholds in the three axis measured by the IMU. Once the data tests
have been collected, a valid system for both detecting the precise length of a shot and removing
the piece of data not related to the padel shot, must be applied. From a visual inspection of the
tests, it has been observed that the 6 Degrees of Freedom (DOFs) undergo significant and easily
identifiable changes when a shot occurs, reaching localized peak values in both accelerometer
and gyroscope axes. For the shot detection, a threshold has been defined for each DOF in such
a way that, if any of the accelerometer and gyroscope axis exceeds its corresponding threshold
in the same sample, a shot can be considered to have occurred. However, it has been detected
that the accelerometer (3 Gs) and gyroscope (5 rad/s) thresholds could be exceeded more than
once during the same shot. To achieve the highest possible accuracy, a flag has been used to
disable the search for a shot, as long as the last detected shot has not been completely saved,
i.e. as long as the current sample belongs to a time interval of a previously detected shot. The
stroke duration has been set to 2 seconds. The adjustment of both the thresholds and the
duration has been conservative, as avoiding false positives is a priority to reach a precision as
high as possible. In Fig. 1b, an example of a forehand stroke once the shot has been detected
and singled out is shown.

3. Dataset creation: The dataset is finally built, collecting data from 12 real players (7 male
and 5 female) aged between 22 and 50 years old. Participants’ levels of play are different, and
range from beginner to professional level. The final dataset contains a total of 2328 strokes
representing the following 13 padel shot types: forehand ground, backhand ground, forehand
wall, backhand wall, forehand lob, backhand lob, forehand lob wall, backhand lob wall, forehand
volley, backhand volley, tray, smash, and serve.

(a) Data capture device. (b) Forehand shot data sample.

Fig. 1: Data capture device and Forehand shot data sample.

5 Some of the experimental tests carried out can be seen in https : //youtu.be/UOWZ40g1Io
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4 Methodology and results

Five different Machine Learning algorithms have been considered for this study. They can
be divided into model and instance-based algorithms. Among the model-based algorithms, the
one proposed are (fully connected) Neural Network (NN), one-dimensional Convolutional Neural
Network (1D CNN), decision tree and SVM. On the other hand, a K-Nearest Neighbors (K-NN) has
been considered as instance based algorithm. The classification of these algorithms is performed
through two different types of input: the complete shot time series, on one hand, and feature
engineering, on the other. For this last, the maximum, minimum and average values of each DOF
of the shot time series have been considered. The input dataset has been divided into train (64%),
validation (16%) and test (20%). In cases where validation is not carried out, the dataset has
only been divided into train (70%) and test (30%). For a fair comparison between algorithms, a
hyper-parametrization of each algorithm has been first carried out in order to correctly adjust each
algorithm to the problem posed. This hyper-parametrization has been carried out through a grid
search. The results obtained are summarized in Table 1, where it can be seen that the 1D CNN
can achieve up to 93.35% accuracy. It is also relevant to note that only the results for time series
input are shown, since they achieved better results than the feature engineering case.

Table 1: Parameters used for the machine learning algorithms and achieved test results.
Classifier Hyperparameters Accuracy (%)

NN 3 layers (1000 500 and 13 filters)
92.0670 epochs

40 batch size

1D-CNN 1 convolutional layer (256 filters)

93.35
2 NN layers (1000 and 13 filters)
70 epochs
70 batch size

Decision Tree 40 max depth

62.09
Min samples split 4
Min samples leaf 1
Entropy criterion

SVM Kernel rbf
91.85

C = 10

K-NN k = 1 81.84

5 Conclusion

The work presented in this paper involves the creation of the first padel shot dataset and
contributes to existing literature with the first classification of padel shots. For this purpose,the
results of up to 5 different Machine Learning algorithms are compared resulting in an accuracy of
up to 93%, achieved by the 1D Convolutional Neural Network.
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Abstract. Attended home delivery services like online grocery shopping ser-
vices require the attendance of the customers during the delivery. Therefore, the
Vehicle Routing Problem with Time Windows occurs, which aims to find an op-
timal schedule for a fleet of vehicles to deliver goods to customers. In this work,
we propose three sweep algorithms, which account for the family of cluster-first,
route-second methods, to solve the Vehicle Routing Problem with Time Win-
dows. In the first step, the customers are split into subsets such that each set
contains as many as possible customers that can be served within one tour, e.g.,
supplied with one vehicle. The second step computes optimal tours for all as-
signed clusters. In our application, the time windows follow no special structure,
and hence, may overlap or include each other. Further, time windows of different
lengths occur. This gives additional freedom to the company during the planning
process, and hence, allows to offer discounted delivery rates to customers who
tolerate longer delivery time windows. Our sweep algorithms differ in the clus-
tering step. We suggest a variant based on the standard sweep algorithm and two
variants focusing on time window length and capacity of vehicles. In the routing
step, a Mixed-Integer Linear Program is utilized to obtain the optimal solution
for each cluster. The paper is concluded by a computational study that compares
the performance of the three variants. It shows that our approach can handle 1000
customers within a reasonable amount of time.

Keywords: Vehicle routing· time windows· sweep algorithm· attended home de-
livery· transportation· logistics.

1 Introduction

The popularity of Attended Home Delivery (AHD) services, e.g., online grocery shop-
ping services, increased within the last years. Especially, due to the current Covid-19
pandemic, this trend is continuing. For example in Western Europe, see [11], the share
of online buyers is predicted to increase from 67% in 2020 to 75% in 2025. There-
fore, the online share of groceries changed from 3.4% in 2019 to 5.3% in 2020 and is
expected to reach 12.6% by 2025.

All AHD services have in common that the customer must attend the delivery of the
goods or the provision of the booked service. To manage this in an effective manner,
customers can typically choose among several time windows during which he or she is
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available to receive the ordered goods or to supervise the service provision. We consider
an application where different time window lengths occur. This allows an operator of
a delivery service to offer discounted delivery rates to customers who tolerate longer
delivery time windows as such offers are easier to include within a tour. Typically,
the company aims to minimize the overall delivery costs and therefore, a variant of
the Vehicle Routing Problem (VRP), the so-called Vehicle Routing Problem with Time
Windows (VRPTW), occurs. A comprehensive introduction to the VRP can be found
in [13]. The authors give an overview of different VRP types with the help of applica-
tions, case studies, heuristics, and integer programming approaches. Another overview
and classification of recent literature considering varieties of the Vehicle Routing Prob-
lem can be found in [2]. For an overview of exact methods for the VRPTW we refer
to [1]. Heuristic methods are reviewed in [3] and [4], and a compact review of exact and
heuristic solving approaches for the VRPTW can be found in [6].

Due to the fact that in AHD services mostly a large number of customers are de-
livered, solving this problem to optimality within reasonable time is rarely possible. In
practice, heuristics are applied to produce delivery schedules of high quality within a
short amount of time. A common approach is the cluster-first, route-second method. In
the first step, the customers are split into subsets, so-called clusters, such that each set
contains as many as possible customers that can be served within one tour, e.g., sup-
plied with one vehicle. In the second step, an optimal tour for each cluster is computed.
[7] originally introduced the Sweep Algorithm for the VRP. Using the analogy of clock
hands, the depot is placed at the center of the plane. A clock hand then sweeps across
the plane. The angle of the hand increases while a customer is inserted in the current
cluster, if a feasible insertion is possible, or otherwise within a new cluster. A recent
study, see [5], applies the Sweep Algorithm for a VRP occurring in an install and main-
tenance service for smart meter devices. In [12], the sweep algorithm only considers
time windows when computing the routes for each vehicle but not during the clustering
step. [8] consider time windows already in the clustering step. However, they make use
of a special time window structure, where the time windows are non-overlapping.

In this work, we propose the following three variants of performing the clustering
step of a sweep algorithm for a VRPTW:

– a variant based on the standard sweep algorithm [7],
– a variant that takes the length of the delivery time windows into account, and
– a variant considering both the lengths of the delivery time windows and the vehi-

cles’ capacities.

We consider time windows with no special structure, and hence, they can overlap
or contain each other. A Mixed-Integer Linear Program (MILP), which is stated in [9],
is applied for deciding the feasibility of a cluster of customers, and for obtaining the
optimal tour for each cluster. Considering non-overlapping time-windows, like in [8],
would lead to a more efficient MILP formulation (see [9] for a comparison of both MILP
approaches). However, most modern routing applications use time windows, which can
overlap each other.

For the computational study, we use a large variety of benchmark instances that have
been carefully constructed such that they resemble real-world data. We consider differ-
ent capacities of the vehicles and therefore, the tour lengths can differ. This study shows
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that our approach is capable of finding good initial solutions for instances containing
up to 1000 customers within a short amount of time.

2 Mathematical Formulation

Now let us introduce the notation required to define the VRPTW. An instance of the
VRPTW is defined by:

– A set of time windows W = {w1, . . . ,wq}, where each u ∈W is defined through its
start time su and its end time eu with su < eu.

– A set of customers C , |C |= n, with corresponding order weight function c : C →
]0,C], where C ∈ R>0 denotes the given vehicle capacity, and a service time func-
tion s : C → R>0.

– A function w : C → W that assigns a time window to each customer during which
the delivery vehicle must arrive.

– A depot d from which all vehicles depart from and return to, C := C ∪{d}.
– A travel time function t : C ×C → R≥0.

In the following, we state some basic definitions and we define the following nota-
tion [u] := [1, . . . ,u], where u ∈ N.

A tour of n customers consists of a set A = {a1,a2, . . . ,an} and the indices of the
costumers refer to the order of the customers. Each customer in the tour has a corre-
sponding arrival time αai , i ∈ [n], during which the vehicles are scheduled to arrive.
Furthermore, each tour has assigned start and end times that we denote as startA and
endA , respectively. Hence, the vehicle executing tour A can leave from the depot d no
earlier than startA and must return to the depot no later than endA .

We denote a tour A as capacity-feasible, if ∑n
i=1 c(ai)≤CA . The special case that

the capacity of a single customer exceeds the capacity limit of the vehicles cannot occur.
If for each customer of a tour holds that the delivery of the goods occurs within the

time window u = w(ai), i.e., sw(ai) ≤ αai ≤ ew(ai), and there is enough time for fulfilling
the order and traveling to the next customer, i.e., αai+1 −αai ≥ s(ai)+ t(ai,ai+1), for all
i ∈ [n], then we call it time-feasible.

A feasible tour is capacity- and time-feasible and a schedule S = {A ,B, . . .} con-
sists of feasible tours where each customer occurs exactly once.

Each element in C has geographical coordinates in the two-dimensional plane and
we assume that the travel times are correlated to the geographical distances. In general,
the travel times are somehow related to, but not completely determined by the geo-
graphical distances. In our application, we typically deal with asymmetric travel time
functions, for which the triangle inequalities, i.e., t(a,c)≤ t(a,b)+ t(b,c), a,b,c ∈ C ,
do not hold. In general, t(a,b) = t(b,a), where a,b ∈ C , is not guaranteed for an asym-
metric travel time function.

The length of a time window u ∈W is defined as eu−su. Each customer can choose
among time windows of length 10, 20, 30, 60, 120, or 240 minutes.

Two time windows u and v are overlapping, if u∩ v ̸= /0, and non-overlapping, if
u∩ v = /0. Time window u contains time window v, if su ≤ sv, and ev ≤ eu. If time
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window u contains time window v, then these time windows overlap each other. It must
not hold that a time window s which overlaps t, also contains t.

In this work we consider three objectives, namely λ1,λ2,λ3:

– The first one is the number of vehicles used, i.e., λ1(S ) := |S |.
– Secondly, the sum of all tour durations is denoted by the schedule duration λ2(S ),

i.e., ∑A ∈S λ2(A ), where λ2(A ) := t(d,a1)+αan −αa1 + s(an)+ t(an,d).
– Thirdly, the sum of all tour travel times is denoted by the schedule travel time

λ3(S ), i.e., ∑A ∈S λ3(A ), where λ3(A ) := t(d,a1)+∑n−1
i=1 t(ai,ai+1)+ t(an,d).

Similar to [12] and [8], we aim to minimize these three objectives with respect
to the lexicographical order (λ1,λ2,λ3), since providing a vehicle is usually the most
expensive cost component, followed by the drivers’ salaries, and the costs for fuel.

3 Sweep Strategy

A sweep algorithm is based on the polar coordinate angles of the customers C , where
the depot d lies in the center of the grid and θ(a)∈ [0,2π[ denotes the angle component
of a customer a ∈ C .

We choose the zero angle, i.e., the starting angle, according to [8] such that it splits
the two neighboring customers with the largest angle gap, i.e., maxa,b∈C θ(a)−θ(b).

We propose the following general strategy to obtain solutions for a given VRPTW
instance consisting of the following steps:

1. Apply one of the methods that obtain a feasible clustering of C .
2. Compute the optimal route for each cluster.

In both steps, the Traveling Salesperson Problem with Time Windows (TSPTW)
occurs as a subproblem to check time-feasibility or to obtain the optimal solution of a
single tour. Next, we give further information about the two steps.

Clustering: We apply the following variants of clustering algorithms in Step 1.

– Traditional Sweep
– Sweep algorithm depending on time window length
– Sweep algorithm depending on time window length and overall capacity

Each of the three algorithms is described in more detail below. Moreover, we illus-
trate each variant with a toy example. The depot is located in the center of the coor-
dinate system and the capacity of each vehicle is 10. In the visualizations we choose
the direction of the zero angle θ0 = 90◦ as three o’clock and increase the angle in each
step counterclockwise. Depending on the selected sweep algorithm we check in each
iteration the capacity-feasibility or time- and capacity-feasibility. Note that the MILP
is only used if the tour is capacity-feasible and the current tour candidate is not time-
feasible, i.e., cannot feasible inserted without changing the order of the already placed
customers. Then, the exact approach tries to find any time-feasible tour including the
current costumers.

After obtaining an initial clustering using one of the heuristics, we determine effi-
cient tours for each vehicle.
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Routing: In Step 2, a tour for each cluster is obtained by solving the TSPTW-MILP
with lexicographical objective (λ2,λ3) to optimality. We apply an MILP formulation
that has been proposed in [9] for solving the TSPTW. Following the lexicographical
order, the MILP first minimizes the tour duration λ2(A ), and then the tour travel time
λ3(A ) while keeping λ2(A ) fixed.

In the following subsections, we describe the different clustering steps in more de-
tail.

3.1 Traditional Sweep

The first variant reflects the traditional algorithm by [7] except checking for both, time-
and capacity-feasibility. It works as follows:

1. Compute the zero angle θ0 and sort the customers according to their polar coordi-
nate angles starting with θ0.

2. Start with an empty cluster.
3. We check, if the next customer from the sorted set can be feasibly inserted within

the current cluster.
– If capacity- and time-feasibility holds, we add the new customer to the current

cluster.
– Otherwise, we initiate a new cluster with the current customer.

4. We repeat step 3 until all given customers are assigned within a cluster.

Therefore, the result of the traditional sweep algorithm is a set of capacity- and
time-feasible clusters.

A simple example of the traditional sweep algorithm with five customers is depicted
in Figure 1. The weights of the customers are given in their boxes, the capacity of each
vehicle is 10, a depot in the center and we start with the zero angle at three o’clock
(90◦). In each step, we increase the angle counterclockwise, such that a new customer
is added to the current cluster. Then we check the capacity- and time-feasibility of it
and if necessary, we increase the number of clusters.

3.2 Sweep algorithm depending on time window length

In this subsection, we describe a sweep algorithm that takes the lengths of the delivery
time windows into account. First, we sort all customers in ascending order of their time
window lengths. Due to the high number of customers there are many customers with
the same time window length and therefore, we start with the following procedure:

– The customer with the lowest time window length is added to the first cluster. If
there is more than one customer with the same length, the sweep algorithm in-
creases the angle beginning from the zero angle and selects the first customer of the
set.

– In each sweep iteration: We increase the angle and consider the next customer
within the current time window length and try to add this customer to the current
cluster:
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Fig. 1. Example of the traditional sweep method with one depot in the center. The capacity of
each vehicle is 10 units, the weight of each customer is given in their boxes, and the number on
the right side of the boxes denotes the number of the scheduled cluster.

• If the tour is time- and capacity-feasible, add the customer to the current cluster.
• Else, increase the number of clusters and add the customer to the next cluster.

– If no customer remains, increase the current time window length and start with the
sweep iteration again, until all customers are scheduled within a cluster.

For further clarifying this algorithm, we consider a toy example with the customers
given in Table 1.

Table 1. Toy example of customers sorted by their time window length for sweep algorithm
depending on time window length.

Time window properties
Required capacity Start time End time Length

Customer 1 5 09:00 10:00 60
Customer 2 4 14:00 15:00 60
Customer 3 4 09:30 11:30 120
Customer 4 5 12:00 14:00 120

In our example, the capacity of each vehicle is 10. We start with the lowest time win-
dow length. There are two customers (customer 1 and customer 2) with the same time
window length. Due to the given angles, customer 1 is added to the first cluster. In the
following step, we consider customer 2, which we try to add to the current cluster, and
therefore we check, if the tour remains time- and capacity-feasible after an insertion. In
this case, the current tour satisfies both conditions, and hence, we add customer 2 to the
first cluster. Next, we consider customer 3, which cannot be added to the current cluster,
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due to the capacity limit of the vehicle. Therefore, we increase the number of clusters
and add customer 3 to the second cluster. Then we try to add the last customer in the toy
example, and hence, the time- and capacity-feasibility of the second tour with the next
customer is checked. The insertion is possible, and hence, customer 4 is added to the
current cluster. Our algorithm terminates with two clusters consisting of two customers
each.

3.3 Sweep algorithm depending on time window length and overall capacity

Again we sort the customers by their time window lengths, and afterward by their polar
coordinate angles. In contrast to Subsection 3.2, we now reserve half of the vehicle ca-
pacity for customers with longer time window lengths. The remaining procedure stays
the same. As a result, this algorithm returns clusters, which are up to a half filled with
customers having a time window length of 10, 20, or 30 minutes and the remaining
capacity is filled with customers having a time window length of 60, 120, or 240 min-
utes. The idea behind this allocation is to ensure that the created tours have a proper
mixture of short and long time windows. This property shall increase the robustness of
the tours against delays occurring during the delivery process. The guaranteed portion
of long delivery time windows introduces some slack such that late deliveries become
less likely.

Now, we continue with a toy example and all information about the customers are
given in Table 2.

Table 2. Toy example of customers sorted by their time window length for sweep algorithm
depending on time window length and overall capacity constraints.

Time window properties
Required capacity Start time End time Length

Customer 1 5 09:00 09:10 10
Customer 2 4 14:00 14:30 30
Customer 3 5 15:00 15:30 30
Customer 4 4 09:30 10:30 60
Customer 5 4 11:30 13:30 120
Customer 6 5 12:00 14:00 120

First, we add the first customer (with the shortest time window length) to the first
cluster. As we reserve half of the capacity for customers with time windows longer than
30 minutes, customer 3 (selected due to the polar coordinate angles of customer 2 and
customer 3) is added to a new cluster, and the same procedure applies to customer 2.
According to the polar coordinate angles, we try to add customer 5 to the first tour, and
therefore, we check, if the cluster is time- and capacity-feasible. Both constraints are
satisfied, and customer 5 is added to the first cluster. Next, we further increase the angle
of the hand, and we consider customer 6 to be next. We notice that there is not sufficient
capacity left in the first cluster. Hence, we assign customer 6 to the second cluster after
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checking the constraints. Finally, customer 4 can be feasibly inserted into the third
cluster. Therefore, the algorithm returns three clusters containing two customers each.

4 Computational Results

In this work, we introduce a benchmark set that imitates urban settlement structures.
Customers can choose from time windows of different lengths, i.e, 10, 20, 30, 60, 120,
or 240 minutes. The operation time of the vehicles is ten hours a day and the time
windows are sampled randomly between the operation times. The customers are dis-
tributed on a 20 km × 20 km square grid that is roughly of the same size as the city
of Vienna, Austria. Furthermore, 80% of the customers are arranged within randomly
selected clusters and only 20% are uniformly distributed on the grid. The Euclidean dis-
tance is used to calculate the distance between two customers. We assume an average
travel speed of 20 km/h (as proposed by [10]) to calculate the travel times.

The service time at each customer is set to five minutes and the order weights are
sampled from a truncated normal distribution centered around five units. In the compu-
tational study, we consider different numbers of customers, namely |C |= {250,500,
750,1000}, and the capacity of the vehicles is set to CA = 200, A ∈ S . The instances
are available at http://dx.doi.org/10.13140/RG.2.2.20934.60480. We use an Ubuntu Mint
20 machine equipped with an Intel Xeon E5−2630V 3@2.4 GHz 8 core processor and
132 GB RAM and Gurobi 8.1.1 in single-thread mode to solve the Mixed-Integer Lin-
ear Programs. For each instance, we apply our three methods and the average results
over 10 instances for the different numbers of customers are given in Tables 3 - 6. We
observe similar behavior for all instance sizes considered. The Traditional Sweep is
much faster compared to the two other methods for both steps in the sweep algorithm.
As the first method obtains up to four times the number of clusters, the number of cus-
tomers within a tour is very low, and therefore, the routing step is very efficient using
an MILP approach. However, the number of vehicles is crucial, and thus, the methods
two and three perform in a costefficient manner. There is no big difference in the results
between the two methods with and without considering the overall capacity. However,
it is expected that the third sweep variant produces more robust tours as described in
Subsection 3.3. Thus, we are able to improve robustness without any loss of quality
with respect to all three objectives. Further, the traditional sweep badly performs with
respect to λ2 but slightly improves λ1 compared to the other two variants. We are able
to find clusters for all algorithms within eight minutes for up to 1000 customers. The
runtime for the routing step is up to one and a half hours for variants two and three.

5 Conclusion

In this paper, we considered several sweep algorithms, which belong to cluster-first,
route-second methods, for the Vehicle Routing Problem with Time Windows. The first
step of the algorithm clusters the customers according to their polar coordinate angles
originating from the depot as the center point of the grid. Secondly, the tour for each
cluster is determined. Considering the clustering step, we introduced a variant based
on the standard sweep algorithm and two variants focusing on time window length and
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Table 3. Average results with 250 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Clustering Routing
Runtime/Objectives t λ1 t λ2 λ3
Units [m:ss] [mm:ss] [hhh] [hh]
Traditional Sweep 0:11 32.7 00:01 222 50
Time window length 1:29 11.7 14:56 46 67
Length & overall capacity 1:36 11.9 14:29 46 68

Table 4. Average results with 500 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Clustering Routing
Runtime/Objectives t λ1 t λ2 λ3
Units [m:ss] [mm:ss] [h] [h]
Traditional Sweep 0:46 65.9 00:01 460 101
Time window length 3:22 19.8 33:57 76 116
Length & overall capacity 3:48 20.0 40:27 77 116

Table 5. Average results with 750 customers over 10 instances each. We denote the runtime by t.
λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Clustering Routing
Runtime/Objectives t λ1 t λ2 λ3
Units [m:ss] [h:mm:ss] [h] [h]
Traditional Sweep 1:51 101,3 0:00:02 714 144
Time window length 6:27 29,4 0:57:51 111 165
Length & overall capacity 6:31 29,8 1:00:40 114 155

Table 6. Average results with 1000 customers over 10 instances each. We denote the runtime by
t. λ1 depicts the number of vehicles used, λ2 gives the schedule duration, and λ3 denotes the total
travel time.

Clustering Routing
Runtime/Objectives t λ1 t λ2 λ3
Units [m:ss] [h:mm:ss] [h] [h]
Traditional Sweep 1:53 149.6 0:00:03 1040 196
Time window length 7:26 37.1 1:16:02 151 203
Length & overall capacity 7:49 36.9 1:23:27 152 200
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capacity of vehicles. Further, a benchmark set with different customer sizes is provided.
Each customer chooses the length of the time window within a given set, namely 10,
20, 30, 60, 120, and 240 minutes. Our computational study showed that the heuristic
is able to cluster 1000 customers within eight minutes. In the routing step, the optimal
tours are calculated by a Mixed-Integer Linear Program, which results in runtimes of
up to one and a half hours. It remains for future work to apply a heuristic approach that
gathers good quality solutions in a fraction of time.
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Abstract. Real-world optimization of complex products (e.g., planes,
jet engines) is a hard problem because of huge multi-objective and multi-
constrained search-spaces, in which many variables are to be adjusted
while each adjustment essentially impacts the whole system. Since the
components of such systems are manufactured and output values are
obtained with sensors, these systems are subject to imperfections and
noise. Perfect digital twins are therefore impossible. Furthermore sim-
ulating with sufficient details is costly in resources, and the relevance
of Population-based optimization approaches, where each individual is
a whole solution to be evaluated, is severely put in question. We pro-
pose to tackle the problem with a Multi-Agent System (MAS) modeling
and optimization approach that has two major strengths : 1) a natural
representation where each agent is a variable of the problem and is per-
ceiving and interacting through the real-world topology of the problem,
2) a cooperative solving process where the agents continuously adapt
to feedback, that can be interacted with, can be observed, where the
problem can be modified on-the-fly, that is able to directly control these
variables on a real-world product while taking into account the specifics
of the components. We illustrate and validate this approach in the Pho-
tonics domain, where a light beam has to follow a path through several
optical components so as to be transformed, modulated, amplified, etc.,
at the end of which sensors give feedback on several metrics that are to
be optimized. Robotic arms have to adjust the 6-axis positioning of the
components and are controlled by the Adaptive MAS we developed.

Keywords: Continuous Optimization · Multi-Objective Optimization ·
Adaptive Multi-Agent Systems · Robotics Control · Photonics.

1 Problem Statement and Positioning

This study mainly concerns optimization problems from real-world applications,
especially robotics control command based on sensor feedback. These applica-
tions go from system configuration based on test bench feedback to real-time
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feedback control of an automated system. In the first case we want to optimize
the response to an input. In the second case we mainly want to minimize the dis-
tance between sensor feedback and objectives by positioning, orienting, aligning
one or more components. We define a robot, an actuator or any automated sys-
tem as a composition of one or more axes, which are associated with the degrees
of freedom of the system. Such problems have a wide variety of external con-
straints like limited resolution time or limited number of moves, predetermined
components positions to respect, etc. We intend to develop an optimization sys-
tem able to adapt to multiple robotics applications. The application domain we
focus on is the photonics domain as illustrated in Fig. 1.

Fig. 1. Example of a real photonics application we are working on (credit ISP System)

1.1 Search Space Topology

Optimization problems are divided into domains depending on their search space
topology. Search space dimensions are defined by decision variables, and poten-
tially limited by hard constraints. For example the number of robots and the
number of axes per robot increase the dimensions. On the other hand, limits
on a component assembly reduce the possibilities on one or more axes, so one
or more dimensions get constrained in the corresponding search space. These
constraints, alongside one or more expert-given objectives, most of the time
antinomic, make appear a Pareto front in the search space. As constraints can
generally be transposed into objectives dealing with the distance to a threshold
(the further away from the threshold, the better, or defining a cost regarding an
acceptable violation), these problems can be defined as Multi-Objective Opti-
mization (MOO) problems, also called Pareto optimization problems.

Another factor of dimensioning of the search space is the decision variable do-
main. Depending on whether the domain is discrete or continuous, optimization
problems are combinatorial or continuous. Since the precision of robotic sys-
tems is continuously increasing, robots positioning problems can be considered
as continuous optimization problems.
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Indeed, the axis resolution, meaning the minimal step with accuracy guar-
antee, is often very small compared to the range of values it can achieve. Fur-
thermore, axes resolutions, ranges and other robots features can change from an
application to another, changing therefore the decision variable domains.

A continuous problem has a potentially infinite number of solutions when
a combinatorial problem has only all possible combinations of its discrete vari-
ables. This gap can have a significant influence in terms of calculation cost.
However, those properties do not mean that combinatorial problems are trivial
and continuous problems are not. It means that search space topology is quite
different from a category to another so the employed method might not have the
same results.

In this study, we focus on Continuous Multi-Objective Optimization problems
and we consider that reliable problems with only one objective are a particular
subdivision of these problems and can be processed in the same way.

1.2 Multi-Objective Optimization Approaches

This section introduces the main approaches used in the optimization domain
before focusing on the most suited for our concern.

Analytical approaches are the most accurate but they are time-consuming
and may not also be suitable for large-scale optimization problems. Arithmetic
programming approaches on the contrary have fast computation performances
since they are based on simplifications and sequential linearizations. However,
they are very weak in handling multi-objective nonlinear problems and may
converge to local optima, non-necessarily satisfying enough [16].

Meta-heuristic optimization algorithms are extensively used in solving Multi-
Objective Optimization problems since they can find multiple optimal solutions
in a single run, and improve the ratio between accuracy and computational cost.
They are problem-independent optimization techniques which provide, if not
optimal, at least satisfying solutions by stochastically exploring and exploiting
search spaces iteratively [17]. The following sections focus on these algorithms.

Population-Based Heuristics are a large part of the state of the art in Meta-
heuristic Optimization Algorithms. The main principle is to simultaneously han-
dle a population of solutions spread randomly or not in the search space. The
population can evolve and select the best solutions iteratively, or converge to an
optimum following a set of influence rules. These algorithms can also be used in
hybrid solutions alongside more classical algorithms like simulated annealing [1]
to balance their weaknesses.

It is difficult to be exhaustive about all works in this domain. For instance,
Genetic Algorithms [9] and Particle Swarm Optimization Algorithms [12] have
together more than 3000 publications per year [18].

A major limitation of Population-Based approaches is their potential com-
putational cost. Such algorithms need to evaluate a relatively large number of

121



4 Q. Pouvreau, J-P. Georgé, C. Bernon, S. Maignan

candidates in order to create a good population of solutions. Computing all the
candidate solutions can be prohibitive for computationally expensive problems.

The type of applications we are studying here requires an adaptation each
time we get a sensor feedback. As a result, an evolution process would require
a huge amount of resources. As each new candidate in the population needs to
be evaluated, the robot needs to reconfigure the whole experimental setting for
each proposed configuration. An adaptive algorithm modifying and proposing
for testing a unique configuration at each feedback is a more suitable strategy
(i.e. a resolution process forming a single trajectory in the search space).

Moreover, when scaling up the number of objectives, the Pareto-dominance
relation essentially loses the ability to distinguish desirable solutions, since nearly
all population members are non-dominated at an early stage of the search. In
fact, a large majority of the usual Population-Based methods (evolutionary al-
gorithms, swarm intelligence) have been shown to degrade when the number of
objectives grows beyond three, and moreover beyond eight [10]. This particu-
larity explains why a part of the literature about these approaches focuses on
Many-Objective Optimization, that is Multi-Objective Optimization problems
with more than three objectives [13]. The need for this category of problems
to have more relevant indicators than Pareto-dominance makes the Population-
Based Heuristics to specify additional calculation for solution comparison.

The types of problems we are interested in require an optimization system
able to converge without maintaining and computing a large number of solutions,
especially when solution comparison becomes non-trivial. Furthermore, we need
a decentralized real-time control of robots arms to actually optimize the real
world system being processed, taking into account errors and noise.

Multi-Agent Systems (MAS) are a decentralized approach, based on self-
organisation mechanisms [22], where the calculation task is distributed over
agents which are virtual or physical autonomous entities[19].

Each agent has only a local point of view of the problem it is solving, corre-
sponding to a local objective function. The global objective function of a problem
is then the sum of all these local functions. This particularity enables to easily
distribute calculation tasks in the resolution process and consequently reduces
computational costs. That is why multi-agent approaches are preferred where
centralized approaches have limited flexibility and scalability.

Multi-Agent Systems are used in a wide variety of theoretical [15] and real-
world application domains of distributed optimization [21]: classification opti-
mization algorithms [3], power systems [7] , complex networks and IoT [5] ,
smart manufacturing [2] or multi-robot systems [20].

Distributed Constraint Optimization Problems (DCOPs) are a well-
known class of combinatorial optimization problems prevalent in Multi-Agent
Systems [4]. DCOP is a model originally developed under the assumption that
each agent controls exactly one variable.
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This model was designed for a specific type of problems where the difficulty
resides in the combination of multiple constraints. These problems are supposed
to be easily decomposable into several cost functions, where the cost values
associated with the variables states are supposed to be known. This major as-
sumption does not stand for complex continuous optimization problems, where
the complexity of the models and their interdependencies cause this information
to be unavailable in most cases. It is important to remark that some works tried
to extend DCOP model to continuous optimization problems but the state of
art about those works remains scattered for now [8].

2 AMAS Theory for Optimization

As seen before, a MAS is a problem-independent solution making it possible to
have a natural representation where each agent is a variable of an MOO problem.
These agents, which perceive their environment and interact, are also a means
to continuously adapt to real-world feedback and provide a "solution" anytime
especially when the problem can be modified on-the-fly.

We propose to adopt the Adaptive Multi-Agent Systems (AMAS) theory
where cooperation [6] is the engine that drives the adaptation of an agent and
the emergence of a global functionality. This cooperation relies on three mech-
anisms : an agent may adjust its internal state to modify its behavior (tuning),
may modify the way it interacts with its neighborhood (reorganization) or may
create other agents or self-suppress when there is no other agent to produce a
functionality or when a functionality is useless (evolution).

2.1 Natural Domain Modeling

As we previously stated, when solving complex continuous problems existing
techniques usually require a transformation of the initial formulation, in order
to satisfy some requirements for the technique to be applied. Beside the fact
that correctly applying these changes can be a demanding task for the design-
ers, imposing such modifications changes the problem beyond its original, natural
meaning. What we propose here is an agent-based modeling where the original
structure/meaning of the problem, is preserved. Indeed it represents the formu-
lation which is the most natural and easiest for the expert to manipulate. We
call this modeling Natural Domain Modeling for Optimization (NDMO) [11].

In order to represents the elements of a generic continuous optimization
model, we identified five classes of interacting entities: models, design variables,
outputs, constraints and objectives. Briefly: given the values of the design vari-
ables, certain models will calculated output values, which will enable other mod-
els to calculate other outputs and so on, until constraints and objectives can be
calculated, in a sort of calculus network. In general, three elements need to be
agentified : the design variables (because they need to be optimised and that
constitutes the solving process), the constraints and objectives. The last two
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are there to model the requirements or statements of the problem, i.e. what the
solving process has to achieve.

To this end, we use a mechanism based on a specific measure called criticality.
This measure represents the state of dissatisfaction of the agent regarding its
local goal. Each agent is in charge of estimating its own criticality and providing
it to the other agents. The role of this measure is to aggregate into a single
comparable value all the relevant indicators regarding the state of the agent.
Having a single indicator of the state of the agent is interesting as it simplifies
the reasoning of the agents. However the system designer has the difficult task
to provide the agents which adequate means to calculate their criticality.

2.2 Agent Internal State and behavior

Our system is a work-in-progress implementation based on the AMAK Frame-
work [14]. A main system representing the AMAS handles an environment rep-
resentation and a collection of agents interacting with the environment. Each
agent controls a parameter of the system, consequently a decision variable of the
problem. The environment and the set of agents execute an iteration to update
their state one at a time. The agents iteration order is randomly updated at the
beginning of each cycle. All the agents have the same three-phase algorithm:

– Perception phase: the agent gets an observation of the environment, that is
a set of criticalities calculated from the distance to the objective.

– Decision phase: the agent processes its new data and follows a decision tree
to adjust its internal state.

– Action phase: the agent acts following its decision by changing its parameter.

The agent decision phase aims at increasing or decreasing the value of the
decision variable it is responsible for (a predefined variation step depending on
its characteristics), and is thus at the core of the process. Except in one case
that we will explain below, a decision is always repeated a stochastically chosen
number of iterations, from one to ten. This momentum mechanism allows to
desynchronize the agents decisions to prevent them from being trapped in what
we call non cooperative synchronisations (basically when two agents try to "help"
at the same time, thus hindering each other).

When starting the resolution, each agent has only a set of criticalities given
by the last environment update. Since it does not have any idea of which action
is the best, its first decision is to act randomly. If the agent observes the criti-
calities decreased beyond a configurable threshold, it will repeat its decision. It
is generally useful to converge fast when the current region of the search space
is relatively regular. On the contrary, if the criticalities increased beyond the
same threshold, the agent will make only one step in the opposite way. These
two rules make a first decision process we can qualify as reactive. When it is
not possible to reactively spot an adequate decision, the agent will process data
it registered in the last perception phases. This more cognitive process consists
in interpolating the variation of the criticalities according to its own value. The
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goal is to identify a region (plus or minus) where the integrative is the lower. It
appears that the momentum mechanism is also useful to this decision process
since it made the agent do what we might call a stochastic scanning of its local
area. In the rare case the second decision process fails to give a decision, the
agent acts randomly.

3 Photonics Problem Modeling and Implementation

The environment of the AMAS has to update the system state, apply the changes
from the AMAS and calculate the input variables used by the agents to take their
decisions. The simulator we developed is shown in Fig. 2.

Fig. 2. Screenshot of the simulator at runtime

The system is a 2D-world composed of a light source, several lenses (Li with
i in [1, N ]) and a screen. The light source emits a number of rays (Rj with j in
[1,M ]) in a conic shape. If a ray intersects with a lens it is refracted using Snell’s
law of refraction i.e. n1.sin(θ1) = n2.sin(θ2) (with each θ as the angle measured
from the normal of the boundary, and n as the refractive index of the respective
medium). So assuming a ray goes through all lenses in the system (which is the
desired state) we have a mathematical suite of operations applied to its position
and orientation Rj(posj,i, θj,i) = Li(Rj(posj,i−1, θj,i−1)) with i in [1, n] and j in
[1,m].

Test cases for the AMAS are generated so that all rays pass through all
lenses as follows: a set of lenses with various characteristics (thin or cylindrical,
refraction index, focal length) are randomly placed on the axis between the
source and the screen (X). A set of rays is generated parallel to the X axis
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so that each ray goes through all lenses and reaches the screen. Repeatedly, the
lenses are shifted and rotated randomly as well as the direction of the rays, while
keeping all rays going through all lenses. After a number of cycles, the state of
the system is set as the reference to reach for the AMAS. Then the lenses are
randomly placed and rotated. This new state is used as a starting point for the
AMAS to work with.

A lens Li is represented by its type (thin or cylindrical), its position Pi(x, y)
and rotation angle Ti, its refraction index ni and focal length Fi. For cylindri-
cal lenses the radius of each face are also necessary R1i and R2i. From these
parameters only Pi and Ti can change during the run and are controlled by the
AMAS.

A ray is a more complex structure since it is represented by a path. A path
is an ordered list of positions and directions describing the intersection points
with the various lenses it goes through {pj,k(x, y)} with k the index of the
intersection, and the direction of the ray at these points represented as an angle
with X {angj,k}.

Rays are not directly known by the AMAS. Only the last position and di-
rection of each ray (when it reaches the screen) is used to derive information to
send to the AMAS as a feedback to its actions.

The derived information can be the results of various computations. The
most straightforward is to form a set of M differences between current rays
and reference rays: {|pj,last(y)− prefj,last(y)|, |angj,last − angrefj,last|}. This gives the
AMAS quite a lot of precise information which is not often readily available in
real life systems.

The second type of derived information are root mean square deviations
(rmsd) of the positions and angles: Rpos =

√
(
∑

((pj,last(y)− prefj,last(y))
2)/M)

and Rang =
√

(
∑

((angj,last − angrefj,last)
2)/M)

These two values are more representative of what can be perceived on a real
system like the global intensity on the screen.

For each of the experiments presented hereafter a set of parameters are given
which represents the setup of the run: first, the sequence of lenses, from source to
screen, present in the system with C for a cylindrical lens and T for a thin lens.
Then the number of rays, the percentage of maximum step for lenses moves and
the type of information sent to the AMAS (full or rmsd). So for an experiment
with 3 lenses, 10 rays, 50% of maximum step and using the rmsd, this set would
be {CTC, 10, 50%, rmsd}.

4 Experiments

First we checked the ability to manage different types of lenses, as for instance,
a cylindrical lens has more complex interactions with rays than a thin lens.

We generated two experiments {T, 100, 10%, rmsd} and {C, 100, 10%, rmsd}
(Fig. 3 and Fig. 4) in which all the other parameters were equal. As visible on
the graphs, the evolution of criticality is more chaotic with a cylindrical lens.
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Fig. 3. Resolution with one thin lens {T, 100, 10%, rmsd}

Fig. 4. Resolution with one cylindrical lens {C, 100, 10%, rmsd}

We remark in the one lens experiments that curves make some peaks repet-
itively. These are the consequence of the momentum mechanism seen in section
2.2 and do not impact the convergence that remains globally continuous.

The other experiments (Figs. 5 and 6) show that the system seems to be
scalable in terms of number of decision variables. In these cases, the peaks men-
tioned earlier disappeared. The results of the moves of each axis agent are more
softened as the number of interactions between rays and optical surfaces grows.

This proof of concept shows promising results: the resolution process succeeds
and no divergence from a satisfying area of the search space has been observed.
However, some adjustments that have to be explored yet could greatly improve
the resolution process. The difficulties encountered are mainly due to the prob-
lem itself: almost all positioning values impact all criticalities, and in a non-linear
way. The parameters consequently are strongly interconnected: the current posi-
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Fig. 5. Resolution with two lenses {CT, 100, 1%, rmsd}

Fig. 6. Resolution with three lenses {TTT, 100, 1%, rmsd}

tion of one axis agent moves the target position of one or more others. Therefore,
the system is chaotic and the agents can collectively hinder themselves. At this
point the optimization problem becomes a cooperation problem.

It has to be noted that the examples presented here are voluntary more
difficult for the AMAS than a real case, where the starting positions are nearer
from the optimum. Starting further away lets us test how the system behaves
while crossing the vast search space of the problem. In this way we can observe
that it does not suffer divergence from any achievement it has already made.
Further work will be done to optimise the number of cycles needed to bring the
criticalities down near zero.
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5 Conclusion and Perspectives

State of the art in multi-objective optimization is dominated by Population-
Based and DCOP approaches. However, it can be difficult for those methods
to be used for real-world applications, especially when the context brings new
constraints like narrowed computation time or resources. This is even worse in
real world robotics control where only one "current solution" can be manipulated
by the robots, and no digital twin is possible.

Moreover, we identified a limitation of current continuous optimization meth-
ods regarding the handling of complex problems with a multi-dimensional contin-
uous search space. Problems of this category are usually too complex to be solved
by classical optimization methods due to multiple factors: the inter-dependencies
of their objectives, their heavy computational cost, their non-linearities, etc.

This limitation has been the motivation to propose a new decentralized ap-
proach. We designed a solver fitted for a large panel of real-world applications
with miscellaneous search space topologies. This approach also permits to easily
scale up problem complexity, in terms of number of parameters as well as number
of objectives. Its aim is to naturally model a real-world optimization problem as
a cooperative resolution problem and to satisfy as much as possible expert given
objectives at a reasonable computation cost. The first results obtained with a
proof of concept are promising. Enhancing the optimization process will now
rely on enriching the cooperation capabilities of the agents.
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Abstract. Local search methods (LSM) are known to be potent optimization metaheuristics
that allow for efficient exploration of large and complex search space. They are, however,
’amnesiac’ search process in that they do not harness the data generated from previous
executions which we consider to be a wealth of information that can be used to improve the
search process. In this work, we propose a reinforcement learning-based LSM that combines
LSM with reinforcement learning (RL) paradigm to improve the search process. The proposal
was tested on the quadratic 3-dimensional assignment problem (Q3AP). Experiments showed
that LSM combined with RL significantly improved the performance of LSM in terms of
solution quality and execution time.

keywords: Metaheuristics, Local search, Reinforcement learning, Tabu search, Simulated
annealing.

1 Introduction

Local search methods (LSM) are widely known as powerful optimization metaheuristics that allow
for efficient exploration of large and complex search space. They initiate the search process from
a feasible solution of the targeted problem, carry out a succession of moves until a predefined
stopping criterion is met and then return the best solution found so far. The most well-known local
search methods are, but not limited to, simulated annealing (SA) [5], tabu search (TS) [3], variable
neighborhood search (VNS) [4] and iterated local search (ILS) [6].

The move selection procedure from the set of potentially eligible moves is a key component
of local search methods and therefore the selection procedure of a move amongst the potentially
acceptable ones is crucial for their performance in terms of quality of solutions and execution
time. A common practice in using a local search in optimization is to perform several independent
search processes (sequentially or in parallel) and take as (sub-)optimal solution a statistical measure
(usually the mean) of the solutions returned by each independent search. Each of these local search
processes starts from scratch and does not exploit data from previous searches. We consider that
data gathered from previous searches is a valuable mine of knowledge that can be harnessed to
make a local search more effective.

Machine learning (ML) is a field of artificial intelligence that focuses on developing systems
that learn from a dataset and leverages the knowledge mined from this dataset to improve the
performance of the targeted system. Machine learning-based approaches have been approved to be
strong methods to solve large scaled or difficult problems where explicit algorithms do not show
good performance [1]. Reinforcement learning (RL) is a machine learning paradigm that aims at
taking suitable actions that would maximize the total cumulative reward of the RL agent. A RL
agent takes an action, moves to a new state and receives a reward that determines the quality of
the action taken. The RL agent’s goal is to maximize the accumulation of rewards over time.

The remaining of the paper is organized as follows. Section 2 describes the reinforcement
learning-based LSM. Section 3 reports the results of the experiments. We end with a conclusion.

2 Reinforcement learning approach for local search method

As noted previously, the move selection is a key component of local search metaheuristics. Our
proposal is a move scoring algorithm that assigns scores to moves so that the more interesting the
move, the higher the score. The move scoring procedure is depicted by Algorithm 1. A MAXSCORE
value is set and will be assigned to the best solution encountered during tests. All moves of a local
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search leading to a solution sol are recorded in a the so-called solMoveList. First, we begin by
scoring the solution sol: if the cost of sol (i.e. f(sol)) is better than the best cost found so far,
then it is assigned MAXSCORE otherwise SolScoring function is invoked to compute the score of
sol (Algorithm 1, lines 4-9). Now that the solution score is set, we update the score list of this
solution and we proceed to the scoring of its moves by querying the function MovesScoring by
passing to it the list solMoveList of the moves carried out between initSol and sol, the score
scoreSol of the solution sol as well as the list moveScoreList of all the moves. To score a move
in solMoveList, the procedure MovesScoring proceeds as follows. It first tests if the move is
new in which case a default score DEFAULTSCORE is assigned to it. If not, the score of the move is
set to its current score increased by the value (solScore ×δ) (Algorithm 1, lines 32-33). The list
of move scores, moveScoreList, is then updated and the same process is performed for the other
moves.

Algorithm 1 Moves scoring pseudo-code.
1: procedure Scoring (initSol, sol, bestSol, solMoveList, solScoreList, moveScoreList)
2: Input: initSol, sol, bestSol, solMoveList, solScoreList, moveScoreList;
3: Output: solScoreList, moveScoreList;
4: if ( f(sol) < f(bestSol) ) then
5: bestSol = sol; solScore = MAXSCORE;
6: else
7: SolScoring (sol, bestSol, solScore);
8: end if
9: UpdateSolScoreList (solScore, solScoreList);

10: MovesScoring (initSol, sol, solScore, solMoveList, moveScoreList);
11: end procedure
12:
13: procedure SolScoring (sol, bestSol, solScore)
14: ∆ = (f(sol)×100)/f(bestSol)); solScore = MAXSCORE ×∆;
15: end procedure
16:
17: procedure MovesScoring (initSol, sol, solScore, solMoveList, moveScoreList)
18: i = 1; s0 = initSol; ∆ = f(sol) - f(s0);
19: while (solMoveList[i] ̸= NULL) do
20: if (not(solMoveList[i] ∈ moveScoreList)) then
21: moveScore = DEFAULTSCORE
22: else
23: moveScore=getScoremove(solMoveList[i],moveScoreList);
24: end if
25: δ = f(si) - ((f(si−1) × 100)/∆);
26: moveScore = moveScore + (solScore × δ);
27: UpdateMoveScoreList (moveScore, moveScoreList);
28: i = i + 1;
29: end while
30: end procedure

Algorithm 2 describes how the proposed scoring technique is implemented into a local search
template to improve search quality and execution time. At each move selection phase, a list of
potential moves is first generated from the list of move scores returned by our machine learning-
based scoring approach. Each potential move is indexed with a number equal to his score so that
higher score moves are more likely to be selected. If the set of potential moves is not empty, a move
is randomly selected from this set otherwise the selection method inherent to the local search is
applied.

3 Experiments and discussion

In order to experiment our proposal, we implemented two well-known local search metaheuristics:
simulated annealing (SA) and variable neighborhood search (VNS). SA and VNS have been used to
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Algorithm 2 Template of a local search procedure with scoring method.
1: procedure LS(P, moveScoreList)
2: s0 =GenerateInitSol(P);
3: k = 0;
4: while (stopping criterion not met) do
5: potentialMoveList = SelectPossibleMoves (moveScoreList,sk);
6: if ( potentialMoveList ̸= ∅) then
7: move(k) = Rand ( potentialMoveList);
8: else
9: move(k) =SelectAccepatbleMove(sk);

10: end if
11: sk+1 = MakeMove(sk, move(k));
12: k = k + 1;
13: end while
14: return sk;
15: end procedure

optimize the quadratic 3-dimensional assignment problem (Q3AP) [7]. For SA, the cooling schedule
function is the geometric schedule (Tk+1 = αTk, where α ∈ [0, 1]). For VNS, 4 neighborhood
functions have been implemented:

– DoubleSwap: Randomly swap two elements to create a new solution.
– TripleSwap: A random permutation between three elements.
– OptheaderSwap: We take two random elements not including the first two elements and we

swap them with the latter.
– DichotomySwap: We take the left elements of the center and swap them all with the right side.

Our approach has been tested on a set of Q3P instances derived from QAPLIB [2]: 9 instances
derived from Nugent benchmarks and 2 instances derived from Hadley benchmarks. The maximum
number of iterations of the LS was set to 100. Table 1 reports the results of the experiments. Let

Table 1: Experimental results
Algo Nug13 Nug15 Nug18 Nug20 Nug22 Nug25 Nug27 Nug30 Had16 Had18

BKV 1912 2230 17836 25590 42467 37716 13266 69704 52980 84932

BFV SA/RL
VNS/RL

1912/1912
1912/1912

2230/2230
2230/2230

17836/17836
17836/17836

25590/25590
25590/25590

43108/42467
43016/42467

37716/37716
37716/37716

14813/13266
14516/13266

72006/69704
72180/69704

52980/52980
52980/52980

84932/84932
84932/84932

#hits SA/RL
VNS/RL

31/74
28/79

4/37
7/52

0/9
2/23

1/11
2/29

0//7
0/11

2/27
1/24

0/16
0/19

0/8
0/11

7/46
7/49

8/34
9/41

AvgBC SA/RL
VNS/RL

2473/2108
2538/2046

2861/2421
2846/2381

20894/18952
20431/18463

28461/26433
28413/25998

48007/44641
48131/44382

39018/38461
39156/38721

16898/14108
16789/14081

74181/71962
74087/71067

55873/53746
55793/53567

87818/85843
87801/85838

AvgTime SA/RL
VNS/RL

431/181
467/153

198/114
196/108

891/507
867/464

1448/989
1403/891

2716/2101
2756/1989

2466/1798
2468/1816

3087/2188
3085/2154

4889/3997
4884/3887

401/279
403/259

585/397
581/381

– BKV: Best known value in the literature for the Q3AP instance.
– BFV: Best found value by the LS.
– #hits: number of times the LS has caught the BKV.
– AvgBC: Average of the best costs returned by the LS.
– AvgTime (sec): Average of the execution time.

us note that the local search combined with our scoring approach based on reinforced learning
has achieved good performances in terms of solution quality and execution time compared to a
standard local search. Let’s particularly note a significant improvement in the number of hits in
LS+R compared to LS alone, particularly for big instances. Furthermore, for Nug22, Nug27 and
Nug30, we notice the failure of basic local search to catch the best known value (BKV) while the
local search combined with the scoring method succeeded in finding the optimal value.

4 Conclusion

In this work, we have proposed and evaluated a reinforcement learning method based on a score
system to enhance local search algorithms. Summing up the results, we see that the method was
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successful in upgrading our local searches by obtaining better results in terms of both the quality
of the solution and the execution time thanks to more efficient search space exploitation. In the
future, we would like to apply the scoring method to more local searches for further studies and
test it on even higher benchmark sizes.
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Abstract. Grammar-Guided Genetic Programming is widely recognised
as one of the most successful approaches for program synthesis, i.e., the
task of automatically discovering an executable piece of code given user
intent. Grammar-Guided Genetic Programming has been shown capa-
ble of successfully evolving programs in arbitrary languages that solve
several program synthesis problems based only on a set of input-output
examples. Despite its success, the restriction on the evolutionary system
to only leverage input/output error rate during its assessment of the
programs it derives limits its scalability to larger and more complex pro-
gram synthesis problems. With the growing number and size of open soft-
ware repositories and generative artificial intelligence approaches, there
is a sizeable and growing number of approaches for retrieving/generat-
ing source code based on textual problem descriptions. Therefore, it is
now, more than ever, time to introduce G3P to other means of user in-
tent (particularly textual problem descriptions). In this paper, we would
like to assess the potential for G3P to evolve programs based on their
similarity to particular target codes of interest (obtained using some
code retrieval/generative approach). We particularly assess 4 similarity
measures from various fields: text processing (i.e., FuzzyWuzzy), natural
language processing (i.e., Cosine Similarity based on term frequency),
software clone detection (i.e., CCFinder), plagiarism detector(i.e., SIM).
Through our experimental evaluation on a well-known program synthe-
sis benchmark, we have shown that G3P successfully manages to evolve
some of the desired programs with three of the used similarity measures.
However, in its default configuration, G3P is not as successful with sim-
ilarity measures as with the classical input/output error rate at evolving
solving program synthesis problems.

Keywords: Program Synthesis · Grammar-Guided Genetic Program-
ming · Code Similarity · Textual Description · Text To Code
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1 Introduction

Genetic Programming (GP [16]) is an efficient approach to evolve code using
high-level specifications, hence it is the most popular approach to tackle program
synthesis problems (i.e., the task of automatically discovering an executable
piece of code given user intent) for software engineering [25, 24] and testing [26].
Various GP systems with different representations have been designed over time
to tackle the diverse program synthesis problems.

PushGP [22] is one of the most efficient GP systems. PushGP evolves pro-
grams in the specially purpose-designed Push language. (i.e., a stack-based lan-
guage designed specifically for program synthesis task). In Push, every variable
type (e.g. strings, integers, etc.) has its own stack, which facilitates the genetic
programming process. Despite its efficiency, PushGP’s dependence to Push (a
language that is not commonly used in practice and that is hard to interpret)
hinders its exploitability and lowers our ability to improve upon it.

Grammar-Guided Genetic Programming (G3P [7]) system is another efficient
GP system that evolves programs based on a specified grammar syntax. Besides
its efficiency at solving program synthesis problems, the use of a syntax grammar
enables G3P to produce programs that are syntactically correct with respect to
any arbitrary programming languages definable through a grammar. The use of
a grammar makes G3P particularly easy to move from one system to another
and to adapt from one language to another [7]. This flexibility elevates G3P to
be widely recognised as one of the most successful program synthesis approaches.

A recent comparative study [6] has evaluated the ability of both G3P and
PushGP to solve several program synthesis problems from a well-studied pro-
gram synthesis benchmark [11, 10] based only on a set of input-output examples.
The study found that G3P achieves the highest success rate at finding correct
solutions when it does find any. The study also found that PushGP is able to
find correct solutions for more problems than G3P, but PushGP’s success rate
for most of the problems was very low. However, despite G3P’s and PushGP’s
successes, the restriction on the evolutionary systems to only leverage the in-
put/output error rate during their assessment of the programs they derive limits
their scalability to larger and more complex program synthesis problems.

Following on the big data trend [4] and the growing number and size of
open software repositories (i.e., databases for sharing and commenting source
code) and generative artificial intelligence approaches (generative deep learning)
there is a sizeable and growing number of approaches for retrieving/generating
source code based on textual problem descriptions. Therefore, it is now, more
than ever, time to introduce G3P to other means of user intent (particularly
textual problem descriptions). Code retrieval and code generation techniques
might output several incomplete snippets or not fully fit for purpose codes–which
often makes them impossible to exploit in their form. Therefore, in this work,
we propose an approach whereby such code guides the search process towards
programs that are similar.

In this paper, we would like to assess the potential for G3P to evolve programs
based on their similarity to particular target codes of interest which would have
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been retrieved or generated using some particular text to code transformation.
We particularly assess 4 similarity measures from various fields: text processing
(i.e., FuzzyWuzzy), natural language processing (i.e., Cosine Similarity), soft-
ware clone detection (i.e., CCFinder), plagiarism detector(i.e., SIM). The ulti-
mate goal is the ability to identify the most suitable program similarity measure
to guide the program synthesis search/evolutionary process when introducing
code retrieval/generation from textual problem descriptions.

Through our experimental evaluation on a well-known program synthesis
benchmark, we show that G3P successfully manages to evolve some of the desired
programs with three of the used similarity measures. However, in its default
configuration, G3P is not as successful with similarity measures as with the
classical input/output error rate at evolving solving program synthesis problems.
Therefore, in order to take advantage of textual problem descriptions and their
subsequent text to code approaches in G3P, we need to either design better-
fitted similarity measures, adapt our evolutionary operators to take advantage
of program similarities, and/or combine similarity measures with the traditional
input/output error rate.

The rest of the paper is structured as follows: Section 2 summarises the
background and work related to our study. Section 3 describes our approach and
details the similarity metrics used as code similarity in our evaluation. Section 4
details our experimental setup. Section 5 reports and discusses the results of
our experiments. Finally, Section 6 concludes this work and discusses our future
study.

2 Background and Related Work

In this section we present the material which forms our research background.

2.1 Genetic Programming

Genetic programming (GP) is an evolutionary approach that enables us to devise
programs. GP starts with a population of random programs (often not very fit for
purpose), and iteratively evolves it using operators analogous to natural genetic
processes (e.g., crossover, mutation, and selection). Over the years, a variety of
GP systems have been proposed–each with its specificity (e.g., GP [16], Linear
GP [2], Cartesian GP [19]).

2.2 Grammar-Guided Genetic Programming

While there is a variety of GP systems, G3P is among the most successfully
GP systems. What is unique to G3P is its use of a grammar as a guideline for
syntactically correct programs throughout the evolution. Grammars are widely
used due to their flexibility as they can be defined outside of the GP system to
represent the search space of a wide range of problems including program syn-
thesis [20], evolving music [17], managing traffic systems [31] evolving aircraft
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models [3] and scheduling wireless communications [29, 18, 28, 30, 27]. Grammar-
Guided Genetic Programming is a variant of GP that use grammar as the rep-
resentation with most famous variants are Context-Free Grammar Genetic Pro-
gramming (CFG-GP) by Whigham [32] and grammatical evolution [21].

The G3P system proposed in [7] puts forward a composite and self-adaptive
grammar to address different synthesis problems, which solved the limitation of
grammar that has to be tailored/adapted for each problem. In [7], several small
grammars are defined–each for a data type that defines the function/program to
be evolved. Therefore, G3P is able to reuse these grammars for different problems
while keeping the search space small by not including unnecessary data types.

2.3 Problem Text Description to/from Source Code

The ability to automatically obtain source code from textual problem descrip-
tions or explain concisely what a block of code is doing have challenged the
software engineering community for decades.

The former (i.e., source code from textual description) was aimed at automat-
ing the software engineering process with a field mostly divided into two parts:
(i) Program Sketching which attempts to lay/generate the general code struc-
ture and let either engineers or automated program generative approaches fill the
gaps (e.g., [14]), and (ii) Code Retrieval which seeks to find code snippets that
highly match the textual description of the problem in large code repositories.

The latter (i.e., textual description from source code) was mostly to increase
the readability of source code and assist software engineering with their de-
bugging, refactoring, and porting tasks. Several works have attempted to either
provide meaningful comments for specific lines/blocks (e.g., [13]) or to generate
brief summaries for the source code (e.g., [1]).

3 Similarity-Based G3P

In this section, we report on how similarity-based G3P perform on selected
three problems from [10]. The G3P system in [7] uses error rate fitness function
based on given input and output data for evolving the next generation, while
similarity-based G3P presented in this section uses code similarity value to the
given correct program.

3.1 Proposed Approach

Our ultimate goal is to exploit textual descriptions of user intent in the program
synthesis process in combination with current advances in code retrieval/gener-
ation (even if such techniques potentially generate multiple incomplete or not
fully fit for purpose programs) to guide the search process of G3P. To this end, in
this work, we devise a similarity-based G3P system, which uses code similarity
to evaluate the fitness of evolved programs against a target source code instead
of input/output error rate. The focus of this particular work is not on generating
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target source code but on (i) assessing the capability of G3P to evolve programs
using similarity measures and (ii) identifying the most suitable measure.

3.2 Program Similarity Assessment Approaches

Measuring similarity between source code is a fundamental activity in soft-
ware engineering. It has multiple applications including duplicate/clone code
location, plagiarism detection, code search, security bugs scanning, vulnerabili-
ty/bugs identification [9] and code recommendation [12]. There have been pro-
posed dozens of similarity detection algorithms since the last few decades, which
can be classified into metrics, text, token, tree, and graph-based approaches
based on the representation [23]. We selected four top-ranked similarity mea-
sures to evaluate their code synthesis proneness when used within G3P.

Cosine Similarity In addition to the standard code similarity detector, we also
used cosine similarity to measure the similarity between two source codes. The
following steps illustrate how we measured similarity using cosine similarity:

1. Prepossessing: The source program is tokenized by removing indentation
information, including white spaces, brackets, newline characters, and other
formatting symbols. Arithmetic operators and assignment symbols were kept
as they can provide meaningful structural information.

2. Frequency Computation: For each token sequence of the source program, we
compute the frequency of each token.

3. Cosine Similarity Computation: We calculate the similarity score with the
cosine formula based on the token frequencies of each source code.

FuzzyWuzzy [5] is a string matching open-source python library based on
difflib python library. It uses Levenshtein Distance to calculate the differences
between sequences. The library contains different similarity functions including
TokenSortRatio and TokenSetRatio. Ragkhitwetsagul et al. [23] surprisingly
found that the string matching algorithm also works pretty well for measuring
code similarity. TokenSortRatio function first tokenizes the string by remov-
ing punctuation, changing capitals to lowercase. After tokenization, it sorts the
tokens alphabetically and then joins them together to calculate the matching
score. While TokenSetRatio takes out the common tokens instead of sorting
them.

CCFinder [15] is a token-based clone detection technique designed for large-
scale source code. The technique detects the code clone with four steps:

1. Lexical Analysis: Generates token sequences from the input source code files
by applying a lexical rule of a particular programming language. All source
files are tokenized into a single sequence to detect the code clone with mul-
tiple files. White spaces and new line characters are removed to detect clone
codes with different indentation rules but with the same meaning.
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2. Transformation: The system applies transformation rules on token sequence
to format the program into a regular structure, allowing it to identify code
clones even in codes written with different expressions. Furthermore, all iden-
tifiers (e.g., variables, constants, and types) are replaced with special symbols
to detect clones with different variable names and expressions.

3. Clone Matching: The suffix-tree matching algorithm is used to compute the
matching of the code clones.

4. Formatting: Each clone pair is reported with line information in the source
file. This step also contains reformatting from the token sequence.

CCFinder was designed for large-scale programs. Since the codes involved
in our evaluation are elementary, the following modifications and simplifications
are made to the original tool:

– Given that we are only interested in obtaining a similarity score between
two pieces of code, we divide the length of the code clone by the maximum
between the lengths of the source files:

Sim(x, y) =
Len(Clone(x, y))

Max(Len(x), Len(y))
(1)

where Clone(x, y) denotes the longest code clone between x and y.
– The matching of code clones using the suffix-tree matching algorithm is

simplified by getting the length of the longest common token sequence using
a 2D matrix (each dimension representing the token sequence).

– The mapping information between the token sequence and the source code
is removed since reporting the line number is no longer needed in our study.

SIM [8] is a software tool for measuring the structural similarity between
two C programs to detect plagiarism in the assignment for lower-level computer
science courses. It is also a token-based plagiarism detection tool that uses a
string alignment technique to measure code similarity.

The approach comprises two main functions, generating tokens with format-
ting and calculating the similarity score using alignment. Each source file is
first passed through a lexical analyzer to generate a token sequence. Like the
common plagiarism detection system, the source code is formatted to standard
tokens with white space removal representing arithmetic or logical operators,
different symbols, constant or identifiers. After tokenization, the token sequence
of the second program is divided into multiple sections, each representing a piece
of the original program. These sections are then aligned with the token sequence
of the first source code separately, which allows the tool to detect the similarity
even the program is plagiarised by modifying the order of the functions.

4 Experiment Setup

4.1 General Program Synthesis Benchmark Suite

Helmuth and Spector [11, 10] introduced a set of program synthesis problems.
These problems were based on coding problems that might be found in intro-
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ductory computer science courses. Helmuth and Spector provide a textual de-
scription as well as two sets of input/output pairs for both training and testing
during the program synthesis process. Table 1 describes the characteristics of
each of the program synthesis problems considered in our evaluation.

Table 1. Description and characteristics of the selected program synthesis problems

Problem Textual Description
# Input/Output Pair
Training Testing

Number IO Given an integer and a float, print their sum. 25 1000

Median Given 3 integers, print their median. 100 1000

Smallest Given 4 integers, print the smallest of them. 100 1000

4.2 Target Programs

To evolve our programs through G3P, we consider an oracle that computes the
similarity measure of each evolved program to a target program code obtained
using some text to code transformation. In this work, we wish to focus our
analysis on the similarity measures and reduce the varying elements in our ex-
periments (particularly in terms of ability to obtain a target program of good
quality). Therefore, we consider the theoretical case where the oracle is aware
of a code that solves the problem, but it is only reporting the similarity of the
evolved code to it. While this assumption is not applicable in real life (i.e., if we
know the correct code, then the problem is already solved without requiring any
evolution), we hope to get enough insight from it on the capability of G3P to
reproduce a program only based on a similarity measure.

Listings 1.1, 1.2, and 1.3 depict the target programs for the oracle assessment
of program similarity for Number IO, Smallest, and Median respectively.

1 def numberIO(int1 , float1):
2 result = float(int1 + float1)
3 return result

Listing 1.1. Target program for Number IO

1 def smallest(int1 , int2 , int2 , int3):
2 result = min(int1 ,min(int2 ,min(int3 ,int4)))
3 return result

Listing 1.2. Target program for Smallest

1 def median(int1 , int2 , int3):
2 if int1 > int2:
3 if int1 < int3:
4 median = int1
5 elif int2 > int3:
6 median = int2
7 else:
8 median = int3
9 else:

10 if int1 > int3:
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11 median = int1
12 elif int2 < int3:
13 median = int2
14 else:
15 median = int3
16 return median

Listing 1.3. Target program for Median

4.3 G3P Parameter Settings

In our evaluation, we use the same parameter settings as those defined for
G3P [7]. We only introduce a unique varying element (i.e., the fitness function
based on a particular similarity measure). We repeat our evaluations 30 times
for each problem and each G3P version (each version with its specific similarity
measure). The general settings for the G3P system are shown in Table 2.

Table 2. Experiment parameter settings

Parameter Setting

Runs 30

Generation 200

Population size 1000

Tournament size 7

Crossover probability 0.9

Mutation probability 0.05

Node limit 250

Variable per type 3

Max execution time 1 s

5 Results

In this section, we report and discuss the results of our evaluations. First, we
start by comparing the performance of G3P using each of the similarity measures,
then we compare them against the traditional error-rate based G3P.

5.1 Comparison of Similarity Measures

The result of the similarity-based G3P is reported in this subsection. The goal of
this experiment is to assess G3P’s ability to evolve a program solving a program
synthesis problem (only known to an oracle) based on the similarity measure.

Figure 1 shows the number of runs (out of 30) where G3P manages to evolve
the correct program for each of the program synthesis problems while using one
of the four considered similarity measures as the fitness function.
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We see from Figure 1 that G3P was able to able to evolve the correct programs
for Number IO and Smallest at least once with Cosine, CCFinder and SIM.
However, G3P did not manage to evolve any correct program for Median. G3P
manages to find the correct program for Number IO in most runs (i.e., 27 out of
30) while using Cosine Similarity. However, the same program fails to find any
correct program for Smallest. Similarly, G3P manages to find the correct program
with Smallest in 17 runs out of 30 while using SIM, but the same program fails
to find any correct program for Number IO. Alternatively G3P with CCFinder
finds correct programs for both Number IO and Smallest, but in fewer runs.
Overall, we could say that G3P has the potential to evolve programs for synthesis
problems using similarity measures. However, there is no similarity measure that
seems to work better than the rest and we need to consider combining similarity
measures to increase the effectiveness of the approach.

5.2 Comparison Against Error Rate-Based G3P

While we have seen that G3P has the capability to evolve correct programs for
some program synthesis, we would like to assess how efficient is this process at
evolving correct programs in comparison with the use of input/output error rate.

Figure 2 shows the performance of G3P with the input/output error rate
to evolve correct programs for each of the considered programs over 30 distinct
runs. We see that G3P with input/output error rate is capable to evolve correct
problems to all the considered program synthesis problems. Furthermore, it is
also capable of finding a correct program in more runs than the different G3P
approaches using any similarity measure. Therefore, while we have seen that
similarity measures seem promising to guide the G3P search for correct programs
to program synthesis problems, they are not reaching the performance level of
the traditional input/output error rate. This difference could be explained by
the long amount of research that has been carried out to refine and optimise the
G3P process with input/output error rate (particularly in terms of designing fit
for purpose crossover and mutation operators).

6 Conclusion and Future Work

In this paper, we have assessed the potential for G3P to evolve programs based
on their similarity to particular target codes of interest. The ultimate goal of this
work is the ability to exploit textual descriptions of program synthesis problems
as a guide to the evolutionary process in place of the traditional input/output
error rate. We particularly assessed the capability of G3P to evolve correct pro-
grams using 4 similarity measures from various fields (i.e., Cosine, FuzzyWuzzy,
CCFinder, and SIM). Our experimental evaluation on a well-known benchmark
dataset has shown that G3P is able to evolve correct programs for some of the
considered program synthesis problems. However, we have found that the perfor-
mance of G3P using similarity measures is lower than G3P with the traditional
input/output error rate. Out future work will focus on trying to improve the
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Fig. 1. Number of iterations (out of 30) where G3P manages or fails to evolve the
target program with each of the similarity measures.
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Fig. 2. Number of iterations (out of 30) where G3P with input/output error rate
manages/fails to evolve the target program.

performance of G3P to take full advantage of such similarity measures alongside
the traditional input/output error rate.
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I Introduction

Artificial neural networks interest many researchers for recent years, they are employed in a variety
of sectors, including image processing, signal processing, handwriting recognition, and facial recog-
nition. Sound recognition is a popular application of neural networks, which has sparked a lot of
interest.
In this article, we will elaborate in the first part the audio classification, by presenting the different
techniques of audio classification that are used. In the second part, we will present the Convolutional
Neural Network and the Spiking Neural Network. Finally, we will conclude by citing the current work
which is in progress related to audio classification using both these two types of neural networks.

II Audio classification

Audio classification is a hot topic that occupies the attention of researchers as it is used in different
applications in different fields : telecommunication, robotics, marine and agricultural fields as well
as other fields. Audio classification consists of automatically determining the nature of the sound
signal. Several works have addressed this subject and different classification techniques have been
used. Dhanalakshm and al. [1] have used the GMM (Gaussian Mixture Models) method as a method
of classification which is a probabilistic model. The basis for using GMM in audio classification
is that the distribution of feature vectors extracted from a class can be modeled by a mixture of
Gaussian densities. Temko and al. [2] worked on SVMs (Support Vector Machines) which transform
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data into a high-dimensional space, this convert the classification problem into a simpler one which
can use linear discriminant functions. L.R. Rabiner and al.[3] used the HMM method in their work
which is widely used classification models in speech recognition. HMM is a finite set of states,
each of which has a probability distribution associated with it. A collection of probabilities known as
transition probabilities governs transitions between states. According to the corresponding probability
distribution, an outcome or observation can be generated in a specific state. Only the outcome is
known and the underlying state sequence is obscured. However, recent works on audio classification
use Convolutional Neural Networks [[4],[5], [6], [7]...]. The advantage of this technique is that it can
classify a large amount of data and increase the accuracy for image classification.
CNN (Convolutional Neural Network) is a feed-forward neural network which is able to classify
images based on feature extraction. CNN is composed of three main layers : convolution and pooling
layers, which perform feature extraction, and a fully connected layer, which maps the extracted
features into the appropriate class. Several CNN models have been proposed each of them has a
specific architecture but their purpose is the same is to increase the classification accuracy.[8]
SNN (Spiking Neural Network) [9] is the type of neural network that mimics the brain the most,
it is more biologically plausible than other traditional neural networks because it applies the actual
functioning of the neuron. In a biological neuron, a pulse is generated when the sum of the changes
in the potential of the presynaptic membrane exceeds the threshold.

III Work in progress

First, our work is to do the audio classification using convolutional neural networks by transforming
the audio signal into spectrograms and use these later as an input of a Convolutional Neural Network
to do the classification. Second, the same classification is made using Spiking Neural Networks based
on the CNN-SNN conversion method named Spkeras which was proposed by Dengyu Wu et al. [5]
which consists on detecting the activation layer in CNN to create SpikeActivation layer.
The dataset that we use include 20 animals and instruments sound [10]. This dataset is constructed
using Animal Sound Data and Instrument Data. Each audio is split into multiple samples. These
samples are divided into three parts: Train, Validation and Test sets which are disjoint. The train
set is composed of 16,636 samples, the validation set contains 3,249 samples and the test set contains
3,727 samples. The code of SpKeras uses Tensorflow and Keras.
This work consists on training of the train set using a Convolutional Neural Network then, we use
SpKeras to convert CNN into SNN after that we evaluate SNN model.
The objective is to prove the utility of using an Spiking Neural network than a Convolutional Neu-
ral Network, in addition, SNN are highly computationally and energy-efficient model and it can be
exploited in a neuromorphic hardware device such as SpiNNaker. The following table presents the
results of the experiments which shows the change in accuracy related to the number of epochs.
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Number of epochs CNN accuracy SNN accuracy
50 80% 71%
100 77% 73%
200 79% 75%
300 80% 77%

IV Conclusion

In this brief study, we sought to provide an overview of audio classification and the most used classi-
fication techniques that exist and introduction of Convolutional and spiking neural network, as well
as a glimpse into our ongoing work on audio classification using convolutional and spiking neural net-
works. As a complementary work, we will use a neuromorphic hardware in order to have an ultra-low
power acoustic classifier and for better performance.
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ABSTRACT 

Simulation-optimization (SO) is instrumental to solve stochastic problems with complexity. Over the past 

half-century, SO methods have progressed theoretically and methodologically across different disciplines. 

The majority of commercial simulation packages - to some degree - offer a SO tool that allows decision-

makers to conveniently determine an optimal or near-optimal system design. With the latest advancements 

in simulation techniques, such as data-driven models and Digital Twins, SO tools need a redesign to include 

new capabilities. This paper proposes a Data-Table Simulation-Optimization (DTSO) platform to narrow 

this gap. By considering data-tables as a decision variable (control), DTSO can systematically generate new 

tables, run experiments, and determine the best table entries to optimize the model. To implement DTSO, 

three software packages (MATLAB, Simio, and MS Excel) are integrated via a customized coded interface, 

called Simio-API. The applicability of this SO tool is tested in two experimental settings to evaluate its 

effectiveness and provide some insights for future extensions. The DTSO initial results are promising and 

should stimulate further research in academia and industry. 

 

Keywords: Data-generated Modeling, Digital Twins, Simheuristics, Intelligent Simulation, 

Simio 

1 Introduction 

One of the major goals of using simulation modeling is to obtain the ideal configuration of a system. This 

is achievable by integrating the simulation model with an optimization module. In this approach, the 

optimizer explores the solution space in order to find the best input values to optimize the model design.  

And its performance measures. A general algebraic form of the simulation optimization (SO) problem can 

be defined as, 

 

min    𝔼𝑣[𝑓(𝑥, 𝑦, 𝑣)] 
 

𝑠. 𝑡.  
𝔼𝑣[𝑔(𝑥, 𝑦, 𝑣)]  ≼ 0  
ℎ(𝑥, 𝑦) ≼ 0 

𝑥𝑙 < 𝑥 < 𝑥𝑢 

𝑦𝑙 < 𝑦 < 𝑦𝑢 

 

𝑥 ∈ ℝ𝑛 

𝑦 ∈ 𝔻𝑚 
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where 𝑓 is a real-valued objective function evaluation or the model output, which without loss of 

generality, is minimized. The performance measure of the model is calculated based on the expected output 

value with respect to input variables. Discrete and continuous input parameters of the simulation model are 

defined by 𝑥 and 𝑦, respectively, with known lower and upper boundaries. Vector 𝑣 is the realization of the 

associated random variables in the model. Function 𝑔  is a real vector-valued function of stochastic 

constraints of the model to account for uncertainty. Constraint ℎ  represents a real vector-valued for 

deterministic constraints that are not affected by the uncertain parameters.  

 The above-mentioned formulation is general enough to represent all kinds of SO problems. Choosing 

the appropriate simulation and optimization design is crucial for practical applications and highly depends 

on the problem characteristics [1]. Commercial simulation software packages often use provably 

convergent algorithms proposed by the research community with metaheuristics to help their users deploy 

SO for their models [2]. In order to use these optimization algorithms embodied in simulation packages, a 

user needs to create the preliminary design of the optimization problem. This design includes simulation 

inputs (controls), the objective functions (responses), and constraints. The optimizer explores a series of 

simulation configurations by changing the model controls and tries to obtain the optimum or close-to-

optimum set of input parameters. When the simulation model inputs are large or the simulation model is 

complex, this search becomes computationally expensive and resource demanding. Therefore, the optimizer 

needs to be efficient and adaptive enough to find the best input variable values among all possibilities 

without explicitly evaluating each possibility in simulation optimization [3]. 

 In the existing SO tools provided by discrete event simulation (DES) packages, the model controls can 

be defined either as binary, integer, or real numbers. A user can easily define the type of inputs and their 

boundaries, and then such as lower-bound and upper-bounds as needed. SO tool will generate scenarios 

based on different combinations of inputs and will optimize the simulation configuration. However, to the 

best of the Author’s knowledge, none of the existing SO tools are capable of handling data-table inputs and 

optimize the model based on table entries. 

 Nowadays, using data-table inputs is very essential in developing DES models with large amounts of 

data. Using data-tables makes simulation model development, execution, and experimentation efficient and 

easy to implement. Instead of defining an abundant number of parameters and variables, all the required 

data for the simulation modeling can be stored in a data-table format. The data-table values can be manually 

entered by the user or bound to a data structure framework such as MS Excel or databases. This feature 

provides a highly flexible approach to handling large data inputs for modeling needs. Data-tables could 

efficiently include any type of model information with a large number of data points. This could include 

entities’ information (i.e. entity types, arrival times, processing time(s), sequence and priorities, etc.), 

resources’ data (i.e. schedules, maintenance plans, locations on the layout, etc.), or even transportation 

networks. Based on the new advancement in DES commercial packages, these data can be accessed 

sequentially, randomly, directly, and even automatically [4]. This emphasizes the importance of using data-

tables with the simulation model creation and experimental analysis. 

 Although enhancing a simulation model with data-table inputs simplifies the model development, there 

is not a trivial way to optimize the simulation models based on data-table inputs. Existing commercial SO 

tools are designed to include a limited number of numerical controls (binary, integer, or real) for 

optimization purposes, but are essentially incapable of using data-table inputs. This becomes more 

challenging when data-tables are non-numerical, e.g. categorical, Date/Time, etc. Therefore, this paper aims 

to remedy this lack and introduce Data-Table Simulation-Optimization (DTSO) platform with the following 

contributions: 

 

• include the ability to run simulation model experiments based on data-table inputs 

• propose a simulation-optimization structure to optimize data-table entries 

• demonstrate its application in three case studies to reveal some insights into the present and future 

works 
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 It needs to be noted that this article does not attempt to develop a new simulation-optimization 

algorithm. The novelty of this work is the platform that allows simulation users to optimize the model’s 

performance by deploying simulation experiments with respect to data-table inputs with no data format 

restrictions. For instance, a user can optimize “Patient’s Arrival Table” (Data/Time format) in a healthcare 

system, “Product Mix Table” (categorical format) in a manufacturing setting, or “Destinations/Nodes 

Sequence Table” (integer format) for a set of transporters/vehicles in a supply chain network. This platform 

benefits simulation model extensibility, scenario creation, and experiment repeatability. So, the original 

form of the SO problem can be modified as follows:  

 

min    𝔼𝑣[𝑓(𝑥, 𝑦, 𝑡, 𝑣)] 
 

𝑠. 𝑡.    
𝔼𝑣[𝑔(𝑥, 𝑦, 𝑧, 𝑣)]  ≼ 0  
ℎ(𝑥, 𝑦) ≼ 0 

𝑥𝑙 < 𝑥 < 𝑥𝑢 

𝑦𝑙 < 𝑦 < 𝑦𝑢 

 

𝑥 ∈ ℝ𝑛 

𝑦 ∈ 𝔻𝑚 

𝑡 ∈ 𝕋 

 

 

where 𝑡 represents the data-table inputs used towards simulation modeling. The values stored in the table 

could have any format and structure, which all of these formats are represented by 𝕋. 
 

The rest of this paper is organized as follows. Section 2 provides a brief introduction of SO and 

highlights the motivation of this work. In Section 3, the DTSO platform is explained in detail and its 

implementation aspects are discussed. To demonstrate the applicability of the proposed framework, two 

experiments are designed and analyzed in Section 4. This work is wrapped up in Section 5, and future work 

directions are presented in the end. 

2 Background and Motivation 

The desirability of seeking better solutions is the main driver for developing SO techniques. As a definition, 

SO is a systematic search process to find the best configuration of a stochastic system in order to optimize 

objective function(s). This search needs to be efficient to minimize the resources spent while maximizing 

the information obtained in a simulation experiment [3]. With a long and illustrious history, SO is arguably 

the ultimate aim of most simulationists [5]. With a huge advancement in both research and practice, SO is 

considered as one of the main streams of simulation studies and has received considerable attention from 

both simulation researchers and practitioners [6]. Many studies applied SO to address problems in 

healthcare [7]–[10], manufacturing [11]–[14], and supply chain [15]–[18]. 

 Nowadays, SO is a vibrant field and various subdisciplines are evolved from different communities 

such as systems and control, statistics and design-of-experiments, math programming, and even computer 

science [5]. With the advancements in the SO literature, many of the simulation vendors provide some sort 

of automatic experimental generators or optimization tools. Based on a survey conducted by [19], 40 out 

of 55 software packages are featured with SO tools. Most of these SO tools such as OptQuest [20] and 

SimRunner [21] are designed based on Simheuristics structure. In Simheuristics, a Metaheuristic algorithm 

is coupled with the simulation environment [22] to perform an iterative search through parameter values to 
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obtain improved responses. These tools do not offer guarantees optimality, but the provided solutions are 

near-to-optimal and realistic. 

 Almost in all the existing SO tools, the decision variables are restricted to numerical parameters without 

considering other important elements of the model. For instance, in a healthcare system, one can easily 

evaluate a hospital model based on different numbers of resources’ (i.e. physicians, nurses, beds, etc.) and 

determine the best numeric combination of these values. However, within the same model, it is not trivial 

to systematically change the layout of the hospital, schedule of physicians/nurses, or even individual 

patients' arrival time. To evaluate each of the above-mentioned scenarios, a tremendous amount of effort is 

required to manually make changes and customize the simulation model. The same concept relates to a 

manufacturing setting. For example, finding the best number of workers, transporters, servers, etc. is easily 

attainable using the existing commercial or non-commercial SO tools, while optimizing workers’ schedule, 

transporters’ network, and servers’ location (layouts) is not a straightforward task.  

 The proposed DTSO in this article is a perfect alternative in which numerical and data-table inputs can 

be optimized simultaneously. This platform is general enough to include any type of table entries with 

multiple data formats. Therefore, DTSO is a promising SO framework and can introduce a significant 

opportunity to the simulation community to solve problems efficiently on a larger scale.  

3 The proposed DTSO platform 

To obtain a practical and ideal DTSO model, an integrated framework is developed using three modules, 

namely (i) optimization, (ii) simulation, and (iii) data-exchange. As illustrated in Figure 1, both simulation 

and optimization modules are bound to an external data source. In this iterative scheme, the optimization 

module provides a new solution and updates the data-table input(s) in each iteration, and then, the 

simulation module runs the model based on the new provided data settings. Using this new framework, 

users can easily build a simulation model with data-tables and optimize it in an efficient manner. 

 

 
 

The main goal is to make this framework general enough to be used in any simulation settings with different 

applications. To implement the proposed DTSO framework, three software packages are linked together. 

The Optimization Module is deployed in MATLAB, and the Simulation Module is designed in Simio. 

These two modules are linked together via MS Excel for data-table input exchange.  

 

Figure 1: The proposed DTSO platform structure  
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 MATLAB is a powerful tool and is adequate for addressing heavy computing needs such as 

optimization problems. MATLAB can be easily linked with external software for advanced calculations 

and its programmable environment allows users to design and customize their algorithms. It has enhanced 

optimization capabilities and allows its user to choose between the existing optimization libraries or their 

own developed algorithms. As a result, the applied optimization algorithm in this work is coded in 

MATLAB. 

 Simulation models often require large amounts of data to define different elements of the model such 

as entities, objects, networks, schedules, etc. Simio can represent data in simple tables and allows users to 

match the data schema for the manufacturing data (e.g. an ERP system) [23]. This simulation software is 

flexible enough to model complex systems with different operational needs. Another major benefit of Simio 

is its API capability which helps developers to extend Simio’s access to external software packages. By 

taking advantage of this feature, a customized API is coded in C# to assist with the TDSO idea. This API 

connects MATLAB with Simio and provides a scheme to exchange data between the two. This enables 

users to connect Simio with other programming languages such as Python, R, or Julia.  

 The third component of this framework is MS Excel which is compatible with both MATLAB and 

Simio. This Data Exchange Module is the central piece of the framework and facilitates the data transfer 

between simulation and optimization packages. In Simio, data-tables can be bound to MS Excel and be 

accessed sequentially, randomly, directly, and even automatically. This important feature makes the 

development of DTSO feasible and effective intervention. A schematic illustration of DTSO is shown in 

Figure 2 and its pseudocode is provided in Figure 3. 

 

Figure 2: Implementation components of the DTSO framework using MATLAB, Simio, and Excel 
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4 Experimental Analysis: DTSO for Job Scheduling and Sequencing 

Using data-tables can significantly facilitate simulation modeling development, execution, and 

improvement. Data can be imported, exported, and even bound to external resources. While reading and 

writing disk files interactively during a run can reduce the execution speed, tables hold their data in memory 

and so execute very quickly [24]. Applying DTSO can harness the advantages of data-tables and place more 

emphasis on their use. To reveal some insights into the present and future works, this section demonstrates 

the applicability of DTSO in two experimental settings.  

 To maintain the focus of the paper on the DTSO advantages, the following experiments in this section 

introduce typical manufacturing settings with nominal operations. However, without loss of generality, 

DTSO can be utilized in any simulation models in Simio with different levels of complexities. Also, the 

applied optimization algorithm is Particle Swarm Optimization (PSO) which is manually coded in 

MATLAB to optimize data-table entries. Again, this does not limit the applicability of DTSO, and different 

users can leverage a variety of optimization tools and algorithms to solve their problems. These experiments 

are discussed as follows. To maintain paper’s flow and its readability, details of PSO, its operations and 

pseudocode are provided in Appendix A. 

 

4.1 Experiment 1: Job Scheduling with DTSO 

In this study considers a flow shop model where 50 jobs (entities) are processed sequentially by two (2) 

servers. This model includes three (3) types of jobs which randomly arrive in the system in batches of five 

(5). The model assumptions are:  

 

• All machines are ready to be scheduled in time zero. 

• Preemption of operations of each job is not allowed. 

• Different job types have different distributions for processing time and due dates. 

• Setup time is job dependent (setup time varies from one job type to another on each server.) 

• Each machine can process only one operation at a time. 

 

 Figure 4-a depicts the simulation environment where the flow shop model is developed based on the 

assumptions provided above. This model has two objective functions: i) minimizing the average Time In 

Figure 3: Pseudocode of Data-table Simulation Optimization (DTSO) 
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the System (TIS), and ii) minimizing the Total Tardiness Cost (TTC) of all jobs. The goal is to find the best 

prioritization of jobs in both servers in such a way that all objective functions are optimized. This model is 

simulated in Simio and a data-table is created to implement its operational logic. 

 

 
 

 Figure 4-b depicts a snapshot of the data-table entry which stores entities’ information such as arrival 

time, entity type, and priority numbers in Servers 1 and 2. The highlighted columns (Sr1Priority and 

Sr2Priority) indicate the priority of jobs on each server. This Optimization Module (i.e. PSO algorithm) in 

DTSO treats this table as a decision variable (control) and improves its entries sequentially until the desired 

solution is obtained. In every iteration, the optimization module in DTSO changes job priorities (values in 

Sr1Priority and Sr2Priority columns). Then, the simulation is triggered to simulate the model based on new 

data-table entries and runs replications to calculate the expected value of objective functions. These results 

are transferred to the Optimization Module to generate new solutions. This cycle repeats until the stopping 

criteria (which are usually set by the user) are met. 

 To analyze the performance of DTSO, its results are compared with two heuristic methods available 

in the literature for solving flow shop scheduling. 

 

• Heuristic 1- SPT: Shortest Processing Time or SPT has shown superior performance for job 

scheduling in many research investigations [25]. By ranking jobs based on the ascending order of 

their processing times, SPT minimizes the total completion time.  

• Heuristic 2- EDD: The second heuristic is EDD (Earliest Due Date) which arranges job orders to 

minimize the total tardiness cost of jobs [26].  

 

 The applied PSO algorithm in DTSO uses a weighted average of both objective functions to solve the 

problem (Equation 1).  

 

min
 

 [𝑤1  × 𝔼𝑣[𝑇𝐼𝑆(𝑥, 𝑦, 𝑡, 𝑣)] + 𝑤1  × 𝔼𝑣[𝑇𝑇𝐶(𝑥, 𝑦, 𝑡, 𝑣)]] (1) 

 

 The performance of the calculated optimal solution provided by DTSO is compared with heuristic 

results provided by SPT and EDD. Each of these solutions is replicated 200 times and the ultimate results 

are plotted in Figure 5. These results suggest the superiority of DTSO over SPT and EDD in terms of both 

Figure 4: Job Scheduling simulation model and the data-table input structure 
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objective functions (time in the system and tardiness cost). With a smooth and straightforward 

implementation, DTSO could efficiently improve the prioritization of jobs and provide competitive results.  

 

 
 

Insight 1: The applicability of DTSO can be easily extended to a flow shop model with more servers. To 

include a new server in the simulation model, a new column needs to be added to the data-table to represent 

jobs’ priority on that server (i.e. Sr3Priorirty). In the optimization algorithm, the size of decision variables 

(𝑛𝑉𝑎𝑟) directly depends on the number of jobs (𝑛) and the number of servers (𝑚) in the model (𝑛𝑉𝑎𝑟 =
𝑛 × 𝑚). So, adding a new server or more jobs just needs a slight change in the optimization algorithm and 

updating 𝑛𝑉𝑎𝑟 parameter. 

4.2 Experiment 2: Job Sequencing with DTSO 

The second experiments demonstrate the applicability of DTSO in solving a job sequencing problem in a 

multi-stage flow shop system (known as assembly flow shop). In this case, 90 jobs are released to the floor 

with 3 stages and 5 servers in each. The model assumptions are: 

• Each machine can process only one operation at a time. 

• Assembly or post-processing stages begin readily after all previous stage operations are completed. 

• All machines are ready to be scheduled in time zero. 

• Preemption of operations of each job is not allowed. 

• Setup time is zero. 

 

 Figure 6 depicts the simulation environment where this assembly shop is developed. Objective 

functions are to minimize both i) average Time In the System (TIS), and ii) Total Tardiness Cost (TTC) of 

all jobs. In all stages, the processing time of jobs is set to 𝑛𝑜𝑟𝑚𝑎𝑙(20,2) min, and due dates are uniformly 

distributed using 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(50,250) min. There are five (5) homogenous servers in each stage and each 

job has to follow a sequence of tasks to complete the assembly. 

 

Figure 5: Experimental results of the flow shop scheduling study 
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The goal is to find the best sequence of each job in each stage. In other words, the ideal solution should 

determine which server is selected in each stage to process a given job. To deploy this, a data-table is 

utilized in the simulation model to set up the sequencing logic. Figure 7 shows a screenshot of this table 

where each row represents a given job arrival time and its sequence in different stages. Three highlighted 

columns (Stage1Sr, Stage2Sr, and Stage3Sr) indicate the server IDs (1 to 5) that each job has to go through 

sequentially from stage 1 to 3 before leaving the system.  
 

 
 

 To optimize this problem, the DTSO platform explores different combinations of sequences for all jobs 

and provides a solution that minimizes objective functions. Two heuristics rules are considered to evaluate 

the quality of DTSO results. These heuristics are: 

 

• Heuristic 1- Cyclic: In each stage, this rule selects servers cyclically to carry out new jobs. 

• Heuristic 2- LLS: This routing rule, selects a server with the lowest service load (LLS) upon a 

new job arrival to the stage. 

 

 The obtained solutions of these three approaches are simulated with 200 replications to estimate the 

expected value of objective functions, TIS, and TTC. The jitter-boxplots of these results are presented in 

Figure 8, where DTSO performance is adequately better than heuristics. The optimization algorithm in 

DTSO could find a solution with higher quality and less variability. The significance of this difference is 

Figure 6: Multi-stage flow shop system developed in Simio 

Figure 7: Data-table input structure for the job sequencing problem  
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tested using one-way ANOVA for TIS and TTC objectives (Table 1 and Table 2). The p-value of both tests 

is low (p < 0.001), which appears that DTSO’s superiority is statistically significant.  

 

 
 

Table 1: One-way ANOVA results for the average time in the system results  

Source of Variation SS df MS F P-value F critical 

Between Groups 76580.58 2 38290.29 474.10 5.2E-124 3.010815 

Within Groups 48215.91 597 80.76    

Total 124796.5 599     

 

Table 2: One-way ANOVA results for the total tardiness cost results  

Source of Variation SS df MS F P-value F critical 

Between Groups 2.63E+08 2 1.32E+08 309.3843 6.31E-93 3.010815 

Within Groups 2.54E+08 597 425708.2    

Total 5.18E+08 599     

 

Insight 2: In this experiment, DTSO solved the problem of sequencing for 90 jobs in 3 stages (𝑛𝑉𝑎𝑟 =
270). To solve this problem, OptQuest requires at least 180 controls (properties) to find the solution; 

whereas, DTSO takes the data-table as a decision variable and evolves its values until the desired solution 

is achieved.  

5 Conclusion and future works 

For more than fifty years, simulation has been extensively applied by researchers and developers. 

Traditionally, it is appealing to equip simulation with optimization to tackle stochasticity and complexity 

of problems. In spite of tremendous advancements in SO techniques, designing well-established models are 

still demanding for today’s standards [1]. In addition, simulation software packages fail to incorporate 

human decision-making analysis or highly computational support tools [27]. 

 This article introduced an innovative interaction between simulation and optimization to carry out the 

decision-making process based on table-table inputs. Unlike the existing commercial software packages, 

Figure 8: Experimental results of the multi-stage flow shop job sequencing study 
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the proposed DTSO framework can efficiently solve problems with a large set of parameters and data-

tables. By developing an application programming interface, called Simio-API, this framework connects 

three modules together, simulation, optimization, and data-exchange. This integration has the ability to run 

simulation experiments with multiple data-table settings, evolve their values, and achieve satisfactory 

results.  

 The usefulness of the proposed framework is demonstrated in two experimental scenarios, 1) job 

scheduling in a flow shop system, and 2) Job sequencing in a multi-stage flow shop system. These 

experiments demonstrated DTSO’s applicability and efficiency. More importantly, some insights provided 

to show how the new model can be implemented and extended to new works.  

 Introducing DTSO offers new opportunities to the community and paves a new avenue of research for 

theory and practice. Nowadays, many simulation software developers value data-driven models. With the 

emergence of new simulation techniques such as data-generated modeling and Digital Twins, the 

usefulness of DTSO can become more obvious. The concept of data-generated modeling is on the basis of 

creating a simulation model automatically using data-tables. This populates a complete simulation model 

from scratch by adding objects to the environment and mapping them to the tables. These tables can include 

all of the modeling needs such as resources’ information, entities, networks, transports, schedules, tasks, 

etc. Lately, Simio announced a newly added feature to its software to build data-generated models [28]. By 

leveraging DTSO, one can optimize different components of the model systematically without the need for 

manual changes. For instance, optimizing system layouts (i.e. hospitals, manufacturing systems, etc.) are 

traditionally limited to a few scenarios suggested by layout designers. By taking advantage of data-

generated modeling in Simio and DTSO, one can easily change the layout, make simulation models 

instantly, and experiment with an abundance of layouts. As shown in Figure 9-a, this requires to define 

object coordinates as decision variables (XLocation and ZLocation columns) for DTSO and let it solve the 

problem. Another example could be optimizing manufacturing orders where orders’ release date and 

priority need to be optimized (Figure 9-b). 

 

 

 Another future research direction is to explore other optimization techniques in the model. To keep the 

focus of the paper on the platform, just one algorithm (PSO) is used in experiments. However, there are 

plenty of SO techniques that can be borrowed and tested within DTSO design. Multiple metaheuristic 

algorithms can be utilized to develop data-table Simheuristics and solve the problems. By increasing the 

size of data-tables (and decision variables), neural networks can be added to the optimizer and make the 

model computationally efficient by approximating objective functions. 

Figure 9: Examples of data-generated modeling in Simio 
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Appendix A 

Particle Swarm Optimization or PSO is a population-based Metaheuristic algorithm developed by Kennedy 

and Eberhart in 1995 [29]. PSO is a swarm-based algorithm and by moving particles in a specific 

exploration field [30]. Due to its effective balancing of exploration and exploitation [31], PSO has been 

widely used in the development of Simheuristic models and solving SO problems. Recent examples include 

using PSO to deal with stochastic models in the supply chain management [32], healthcare systems [33], 

and manufacturing [34]. The general pseudocode of PSO is shown in Figure 10. 

 

 
Figure 10: Pseudocode of Particle Swarm Optimization (PSO) 
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1 Introduction 

There are currently numerous commercial devices working with wireless protocols operating in the 

2.4 GHz environment. In the coming years, the number of wireless devices is even expected to increase 

considerably due to the rise of IoT devices, mostly equipped with wireless communications. This saturation 

of the wireless space poses a serious challenge to the reliability of communications due to the problem of 

interference between technologies. However, this problem can be mitigated if the source of the interference 

is known. In the case of WiFi environments, access points can apply strategies such as changing the channel 

or modifying the channel bandwidth. It is also possible, once the sources of interference are known, to 

modify the location or the number of access points to achieve better performance. 

Nowadays, there is a multitude of equipment available to perform this type of task, such as spectrum 

analysers, interference classifiers, etc. But all of them are specific purpose devices with a high cost. The 

objective of this work is to incorporate into commercial access points a specific software to scan the medium 

and, once the data is collected, process them by using classifiers so that to interferences can be categorized 

according to their origin. 

2 Related work 

WiFi access points (APs) use various mechanisms in the 802.11 MAC to detect and avoid 

interference from other Wifi sources but usually they ignore non-Wifi sources. However, given the 

continued growth of non-Wifi activity in this shared unlicensed band and the resulting impact on Wifi 

performance, hardware vendors and network administrators are increasingly exploring techniques to better 

detect non-Wifi sources of interference. In [1], authors use hidden repeating patterns in the signals to build a 

unique signature to detect signal types and their spectral and spatial parameters. Monitoring packets on 

heterogeneous wireless networks to efficiently map signals to protocols has also been proposed as a possible 

solution [2]. Channel State Information (CSI) [3] and RSSI [4] have also been proposed as the basic features 

to perform the categorization of interferences in conjunction with several machine learning classifiers such 

as kNN or SVM. 

Unlike these previous works that focus on certain signal characteristics or on the packets of the 

different protocols, this work proposes to use the raw data in combination with convolutional neural 

networks. The main advantage of using neural networks is that it is the network itself that searches for the 

relevant signal features that optimize the final classification. 
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3 Methodology and Results 

Qualcomm/Atheros 802.11xx chipset is part of many APs and can be used to scan in passive mode 

and report spectral samples using Discrete Fourier Transform (DCT) tool to compute Fast Fourier transform 

(FFT) in baseband, which could be used to detect wireless signals with inclusion of non-802.11 signals. 

Once the dataset is stored, the maximum and the mean power values for each frequency are collected. The 

interference detection problem is then formulated as a 5-class classification problem in a WiFi scenario with 

the following classes: no interference (clean environment), WiFi interference, Bluetooth interference, 

Jammer interference and microwave interference. It is assumed that only one interference is present at the 

same time. The dataset was collected using commercial APs that continuously scan the environment under 

the presence of each type of interference. As a result, each spectral scan can be represented as a 

time/frequency diagram, as illustrated in Figure 1. The horizontal axis represents the 100 frequencies 

between 2401 and 2500 and the vertical axis is time. 

 

 
 

  

(a) WiFi  (b) Bluetooth  (c) Jammer (d) Microwave 

Figure 1. Time/Frequency diagrams for the four types of interferences 

 

The set of classifiers detailed in Table 1 will be considered for the interference detection. The 

continuous scan is split in 500 spectral scans of 10 timesteps for each class, which leads to a total dataset of 

2500 samples. 2000 out of 2500 samples were randomly selected for training, 150 for validation and 150 for 

testing. The training dataset was used to train the parameters of the set of classifiers detailed in Table 1. For 

each algorithm, several hyperparameters also detailed in Table 1 are optimized using the validation dataset. 

The final accuracy of each algorithm is reported with the test dataset. 

The first proposed classifier is a 1D convolutional neural network (CNN1D), which applies the 

convolution operation along the time dimension. The rest of classifiers are traditional machine learning 

classifiers. In this case, the mean value along the 10 timesteps is taken as the input features for each 

algorithm. The second column of Table 1 provides the optimum values of the most important 

hyperparameters related to each algorithm. The main difference between 1D CNN and the rest of machine 

learning classifiers is that the former considers sequences of 10 timesteps so that filters can detect temporal 

dependencies along time. This possibility is not considered by machine learning classifiers. 
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Table 1. List of classifiers, hyperparameters and final accuracy 

Classifier Hyperparameters  

(Optimum value) 

Result (test accuracy) 

1D convolutional neural network 

(CNN 1D) 

Number of filters (16) 

Kernel size (4) 

Dropout layers prob. (0.2) 

0.82 

k-NN k value (1) 0.58 

Logistic regression (LG) NA 0.46 

Random Forest (RF) 
Number of estimators (100) 

Max depth (30) 
0.72 

Gradient Boosting (GB) 
Number of estimators (100) 

Max depth (10) 
0.73 

Support Vector Machines (SVM) Regularization factor (0.3) 0.49 

Multilayer perceptron (MLP) 
Number of neurons per layer 

(16,16,8) 
0.57 

 

The comparative analysis presented in the last column of Table 1 shows that the best classifier is the 

one implemented by means of CNN1D with an accuracy value of 80%, followed by the RF and GB 

classifiers. 

 

4 Conclusions 

In this paper, we propose using a CNN1D to process the time/frequency diagram collected by 

commercial APs in a WiFi environment. Its main advantage over traditional machine learning classifiers is 

its ability to find time patterns over the spectral data of the environment, improving the results provided by 

alternative classifiers.  
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1 Introduction

Modern WiFi networks have become complex systems with multiple entities interacting with each
other, trying to provide the best quality of service to all their connected users [1]. Meanwhile,
the demand for multimedia streaming services, ultra-high-resolution video, and real-time gaming
has increased exponentially. Due to this demand, the maintenance and troubleshooting of such
networks become a task reserved for technical experts. These tasks become costly and must be
performed continuously so that connected devices do not experience the quality of service (QoS)
degradation. In addition, there are multi-factor anomalies that are very difficult to detect by the
human eye, or that it is too late to act when they are detected.

In this paper, we study various machine learning models for the supervised classification of
large amounts of collected data [2]. The objective is to obtain the modulation and coding scheme
(MCS), one of the most reliable network metrics to assess the QoS that a user is experiencing [3].
The resulting models, once trained with real data, can be deployed in corporate WLAN networks
to provide insights on: (I) The expected MCS based on the rest of the observed parameters. (II)
The most likely cause why the MCS has reached that value. (III) Whether this value is considered
an anomaly concerning what should have been obtained in the current state of the system [4].

The paper is structured as follows. In Section II, the general architecture of the system is
presented and the remote data collection process is discussed. Section III presents the machine
learning models to be analyzed, as well as the experiments and their results.

Fig. 1. Scheme of the system.

2 System overview

A WLAN network generally consists of access points (APs), switches to aggregate traffic, and a
router to forward the data to/from the Internet, in addition to Ethernet cabling and end devices
(smartphones, tablets, laptops, etc.) that connect wirelessly to the APs. Furthermore, modern WiFi
networks usually have a management and configuration platform in the cloud, where technicians can
collect statistics and modify settings on the remote machines, either via API or through graphical
interfaces. The most direct way to collect information on the various network metrics is to capture
various features in the APs, which are the most critical equipment in the network. Indeed, through
their radio interfaces, they are in direct communication with the end-users, who are the ones who
suffer or enjoy the quality of the network the most. Figure 1 shows an overview of the system of
our approach. As can be seen, firstly, data is collected from different WLAN networks. This process
consists of a series of queries and API calls to stimulate the APs and to gather their responses so
that it is passive for the users. This way they don’t have to be disturbed by installing apps and
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granting permissions, and it is more flexible. Specifically, the metrics we captured from the APs are
shown in Table 1, on three levels: (I) about their internal state, (II) about their connection to the
Internet, (III) referring to their link with connected clients. All this data is then aggregated and
stored on a remote machine, which will also oversee the offline post-processing. This data is initially
stored in a relational database and then merged into a single table pivoting on the fundamental
metrics. Once the feature table is built, different analyses can be performed in parallel to test its
classification and predictive capabilities.

Table 1. List of collected metrics.

(I) - Minutes since the last hardware reboot
- Averaged load in the last minutes
- Used/free/buffered/available memory
- CPU status
- 2.4 GHz and 5 GHz radio channels and
their occupation time

(II) - Latency to Google’s DNS (8.8.8.8)
- Upload/download bitrate speed in Mbps

(III) - 802.11 Modulation and Coding Scheme
- Signal-to-Noise Ratio (SNR)
- 802.11 protocol: A/B/G/N/AC/AX
- Upload/download throughput
- Failed and total transferred packets
- Roaming: 802.11K/R/V protocols
- Channel bandwidth
- Number of spatial streams (MIMO)

3 Experiments

A series of experiments have been carried out with three different models: decision tree (DT),
random forest (RF), neural network (NN). Although regression tests have also been performed on
the MCS, here we show the results on classification tests, as this problem is more consistent with
the nature of the MCS as a QoS discrete metric. Recalling that the MCS is a discrete value ranging
from 1 to 9, we consider a model to be a good classifier if it obtains a low root mean squared error
(RMSE), or a high success rate. To provide context, each sample was taken approximately every 6
minutes on each AP of each WLAN. The 15495 samples captured during multiple weeks have been
divided into two independent sets: a training set (80%) and a test set (20%). Missing memory data
were filled in using linear regression, which showed 99.97% accuracy. Data rates and throughput
were shown to have a negligible influence on the models, and have therefore been ignored for the
final analysis. Also, features like the transmission mode that could distort the results were removed
because of their artificial correlation with the MCS due to standard restrictions [5].

3.1 Hyperparameter selection

After some experimental tests, the chosen values for the hyperparameters of the DTs are a maxi-
mum branch depth of 6 and a minimum number of samples per leaf of 0.5%. In the RF models, a
number of estimators (trees) of 800 is added to the previous parameters, as it produced the best
results. Finally, NNs are much more flexible, as there is a wide variety of choices, and after some
testings, the final NN is conformed by a total of five layers with 72, 100, 100, 48, and 9 neurons,
respectively. Moreover, a 10% dropout has been applied to avoid overfitting.

3.2 MCS root cause analysis

On the one hand, it is possible to identify it on the decision paths over the trained DT and RF, as
well as the influence of each input feature on the final estimated MCS. The NN, on the other hand,
does not directly show the influence of each feature, which is its main disadvantage compared to the
previous models. Thus, in order of importance, the features that have the greatest influence on the
decision are: (I) Bandwidth (24%). (II) Signal to Noise Ratio (12%). (III) Spatial streams (12%).
(IV) Used and available memory (7%). (V) Uptime (5.5%). The remaining features influence less
than 5%. This allows to immediately solve two very useful problems for network administrators
when troubleshooting: (I) Given an observed MCS, choose as the most likely causal branch the
one that leads to a leaf that maximizes the number of samples. (II) Given an observed and an
estimated MCS, determine whether it is an anomaly or not concerning the rest of the dataset. In
other words, whether or not this value can be explained by the model.
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3.3 Impact of the size of the training set

Finally, the number of samples to train the three models will be increased from 1% to 100%
of the set reserved for training. For each iteration, the samples to evaluate the success rate of
classification are chosen randomly (until the corresponding percentage is reached), to avoid biases
due to transitory phenomena in the dataset. Figure 2 shows the performance of the three models
in terms of the success rate concerning the percentage of training data used. Results have been
averaged 100 times to make the output more robust. It can be seen how the RF and DT models
perform better for small training datasets, while the NN outperforms them with a larger corpus.
Moreover, it is not worth training with more than 6000 samples (half of those available), thereafter
achieving an RMSE of 1.5 and a success rate of 81.25%.
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Fig. 2. The averaged test success rate of the three models versus the size of the training data set.

4 Conclusions

In this work, three models for the classification of the MCS have been built and evaluated using
real data from active WiFi networks. This allows estimating the quality-of-service of each con-
nected user, as well as detecting anomalies and explaining the root cause of the values found. The
data collection and processing architecture has also been presented. The experiments carried out
show that the neural network needs many more training samples to reach its minimum. Of the
three models chosen, the one with the lowest error rate is the neural network, but as we already
know, it hinders the interpretability of the decisions. Thus, the best compromise between model
explainability and performance is obtained in the random forest.
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Abstract. The usage of Autonomous Surface Vehicles enhances the monitoring of large-
scale water environments. In this work-in-progress, we evaluate the idea of monitoring the
continuously changing behaviors of water quality parameters via Bayesian Optimization and
Gaussian Process that account for time-varying behaviors. Results of this novel formulation
show good monitoring regarding three implemented strategies for the monitoring system.

1 Introduction

Water Quality Parameters (WQPs), such as Dissolved Oxygen, pH, turbidity, etc., are used to
describe the physicochemical properties of water bodies. Bad practices involving these waters can
result in polluted waters that are no longer safe to harbor a balanced ecosystem, meaning that their
WQPs have undesirable values and are harmful for fish, and even humans. Therefore, a monitoring
system of these WQPs can be helpful for maintaining or recovering healthy waters. Mar Menor in
Spain is a salt lagoon that is known for having polluted waters for numerous reasons [1], hence it
is a good candidate for monitoring.

There exist a set of fixed monitoring stations across the lagoon [1], but its size (135 km2) is
too large to let the fixed system alone to provide models with low levels of uncertainty. Moreover,
there exist zones whose WQPs are always only approximated since they are never measured. It
is inefficient just to increase the number of measurement locations and, more importantly, not
every location might be available for continuously measuring. Therefore, in this work, we use
Autonomous Surface Vehicles (ASVs) to solve these issues. ASVs are mobile robots that can travel
on the surface of a water body and, in this case, perform WQP measurements using on-board WQP
sensor systems. Monitoring water environments using ASVs has other advantages considering their
safety, robustness, and quick reusability.

Systems that use ASVs to perform monitoring can be found in the literature [2, 3], some of
them focus on patrolling the surface of the water body [2], others seek to obtain approximate
static models [3], and others on optimizing [4] (finding minimum/maximum), but none of them
consider that the environment is continuously changing, which is an expected behavior of WQPs.
Considering this, the monitoring to be proposed in this work-in-progress considers this dynamism
when performing the mission and is designed to produce dynamic models of WQPs.

This work-in-progress discusses the main system that will efficiently select Water Quality mea-
surement locations for an ASV. The system will employ a time-varying surrogate model as the core
component and utility functions to select measurement locations so that this model is reliable and
includes knowledge of a non-static scenario. The main contribution of the current work is: the first
system, to the best known of the authors, to propose a time-varying surrogate modeling system
for WQPs using an ASV. Section 2 describes the problem and the proposed approach and Section
3 presents the current results and provides a framework for future work.

2 Description of the Proposed Approach

To efficiently utilize the offline data, which consists of 12 real measurements performed, we use
Gaussian Process (GPs) as the surrogate model, which will include information derived from these
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measurements. GPs are stochastic models based on Multivariate Normal Distributions that can
include known information to efficiently describe approximated models [4]. Moreover, GPs yield
the expected output values and confidence measures around them, making their use evident for
cases like this, in which we will never know the real behavior of a WQP. To produce a regression,
GPs use i) a covariance function between inputs, usually called kernel function, and ii) pairs of
input and output data.

In this work, we aim at obtaining WQP values (output) considering a location x inside the
lagoon (input). Therefore, the kernel function is described in terms of covariance between mea-
surement locations (i.e., how far apart can be two locations so they are correlated?). In [4], the
authors have shown that the Radial Basis Function (RBF) kernel can be used to model WQPs
efficiently. RBF depends on a single hyper-parameter ℓ, named length scale, and has the form of
k(x, x′) = exp (−||x− x′||2/2ℓ2). In this work, we consider the measurements performed by the
mentioned fixed stations to approximate the length scale value. Finally, the GP regression for all
lagoon locations x ∈ X can be obtained in terms of the mean value µ(x) and the uncertainty σ(x)
around it using the next expression:

µ(x) = k(x,p)
(
K + σ2

ϵ I
)−1

y (1)

σ(x) = k(x, x)− k(x,p)
(
K + σ2

ϵ I
)−1

k(p, x) (2)

where p ⊂ X are the locations in which measurements have been performed, hence their y values
are also known, K is the covariance matrix of all locations p and σ2

ϵ is the expected noise value.
Considering this regression, the objective is to define new measurement locations according to
the GP model and a utility function (based on µ(x), σ(x)), which corresponds to the truncated
Expected Improvement (tr-EI(x)) [4], so that a new measurement location is obtained using:

x∗ = argmax
(
tr-EI(x)

)
∀ x ∈ X (3)

This function ensures that the vehicle is only able to travel a maximum distance between
measurements. Next, using the methods for finding maximum/minimum time-varying functions
described in [5]. We implemented the following strategies for efficient time-varying WQP monitor-
ing: i) ignore strategy, ii) time as third feature strategy, and iii) time as noise amplitude strategy.

2.1 Ignore Strategy (IS)

As the name suggests, in the first strategy, we ignore that the measured model is dynamic and the
GP is fitted to the measured data as is. This method resembles the work in [4], where the behavior
is expected to be stationary. This method serves as a baseline and can be used for stationary
parameters, but will produce unreliable outputs for time-varying behaviors.

2.2 Time as third feature Strategy (TaTFS)

Expanding the dimension of the input is probably the most compelling strategy. In this strategy, we
expand the input x to include the time t. Consequently, the input space is defined by x = (x, y, t),
in which t is defined by the difference in hours between the time of measurement and the time of
the first measurement performed ts. Thus, t is a monotonically increasing value.

Since an additional feature is now present in the GP, an additional hyper-parameter must be
precalculated so that the GP can make efficient use of this dimension. In this approach, we propose
to derive an approximate value considering the time and output difference between two available
measures. With ℓ =

(
ℓ, ℓ, t

)
and all previous expressions, the new GP will vary its output according

to the time in which the measurement has been performed.

2.3 Time as Noise amplitude Strategy (TaNS)

For continuous monitoring, considering that newer measurements are more relevant than older
ones is also a valid strategy. In this strategy, we maintain the location (x, y) as input but change
the noise σ2

ϵ to account for “aging” of measurements. This strategy makes explicit use of the
advantage of including noise in the GP, since the value is now time-varying, hence not the same
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for all performed measurements. In that sense, the noise value σ2
ϵ (t) is now dependent on t and

is updated with each evaluation of the GP. The dependency is a subject of study and must be
carefully defined according to the expected reevaluation time frame.

3 Current Results and Future Work

Initial results include evaluation of the offline error according to synthetic data of one WQP. Using
the web page https://marmenor.upct.es/, we selected to monitor the turbidity in two dates.
For the lengthscale values, we used the map and obtained a value that would satisfy the reads
(measurements). Considering the initial and final readings, we can also derive a lengthscale of
time for the second strategy whose value is also useful for the third strategy. Using as length-
scales, ℓx, ℓy, ℓt = [1998.9, 1358.457, 27.68] [pixels, pixels, hours] and defining a maximum distance
of 382 [pixels], according to [4], Figure 1 show current results for the offline error at time te, which
considers the final synthetic map available in the same webpage as the ground truth.
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Fig. 1: Offline Squared Error for the three different implemented strategies.

Current results show that, for the slow rate of change of the synthetic data, the IS and TaNS
can efficiently obtain good surrogate models with low levels of offline error, having Mean Squared
Errors (MSE) of 0.0396 and 0.0288, respectively. Surprisingly, the TaTFS shows the least favorable
behavior (MSE = 0.082). Future work will focus on time-varying acquisition functions so that the
selection of next measurement locations also includes the time dependence. Additional future work
will also include fusion with fixed station sensor values and evaluation considering the error over
time instead of the static offline final error currently being used.
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de usuarios PAIDI 2020 P18-TP-1520.”

172



MORL/D: Multi-Objective Reinforcement Learning based
on Decomposition

Florian Felten1, El-Ghazali Talbi2,3, and Grégoire Danoy1,3
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1 Introduction

Many real life problems involve multiple objectives. The established way to resolve these is called
Multi-Objective Optimization (MOO). This field has been extensively studied for over 50 years,
producing a wide variety of optimisation approaches. These rely on a set of concepts such as Pareto
dominance, indicators or scalarisation. Yet most of these approaches require a complete knowledge
of the environment dynamics [6].

Reinforcement Learning (RL) is a machine learning technique which aims at training an agent
to behave optimally in some possibly unknown environment [6]. Its extension to environments
containing multiple objectives is called Multi-Objective Reinforcement Learning (MORL). One
of the existing approaches to solve MORL problems, called outer loop multi-policy MORL, aims
at learning various optimal compromises between objectives. Its strategy is to decompose the
problem into various subproblems by using different scalarisation functions. These algorithms then
apply standard RL on the scalarised subproblems as to target various optimal policies. Other
MORL approaches have been published lately; nevertheless, this field remains understudied when
compared to MOO or RL [2].

At the same time, MOEA/D [8], a framework allowing to use the decomposition technique in
Evolutionary Algorithms (EAs) has been introduced in the MOO literature. Similar to outer loop
MORL, this framework converts the multi-objective problem into various single-objective problems
(SOPs) by using various scalarisations. An interesting feature of MOEA/D is that the algorithm
proposes to search for different solutions simultaneously by using the concept of neighborhood:
subproblems which rely on close weight parameters for their scalarisations have good chances of
sharing similarities in their solutions’ components, see for example Figure 1. Since its introduction
in [8], this algorithm has been the subject of a lot of studies and variants [7].

Although outer loop algorithms have a similar structure to MOEA/D, to the best of our knowl-
edge no work has clearly identified those similarities yet. It seems likely to us that techniques
coming from decomposition based algorithms could be good candidates to be applied to outer loop
MORL. Given the abundance of decomposition related research published over the last years, the
field of MORL could clearly benefit from the acquired knowledge of the MOO community. This
paper presents an initial attempt to design an outer loop MORL framework which could easily be
extended in order to ease the transfer of MOEA/D variants’ concepts into MORL.

Fig. 1. The MOEA/D idea: split the multi-objective problem into various single-objective problems gn.
g1, g2, g3 are considered to be neighbors since their associated weight vectors are close while g4 is not
considered to be in the neighborhood.
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Algorithm 1: MORL/D: outer loop MORL framework using decomposition.

Input: Stopping criterion stop, Environment env, Number of scalarisations n, Neighborhood size
T , Sub problem stopping criterion SOStop.

Output: The trained policies π1, ..., πn.
1 begin
2 Λ←− InitializeWeights(n)
3 Π ←− InitializePolicies(n)
4 for i = 1 to n do
5 B(i)←− {i1, ..., iT } | Λi1 , ..., ΛiT are the closest neighbors of Λi in the euclidean space

6 while ¬stop do
7 for i = 1 to n do
8 Πi ←− SOLearn(Πi, Scal, Λi, env, SOStop)

9 UpdateNeighbors(B(i), Πi)

10 return Π

2 A Decomposition Framework for MORL

Algorithm 1 presents a high-level method for learning multiple policies using decomposition. It is
inspired from the seminal work by Zhang et al. [8], and is designed to be easily extended.

The algorithm starts by initializing the weights and policies (lines 2–3)1. Then the neighbor-
hoods are computed (lines 4–5). A single-objective RL algorithm is applied on the environment to
improve the current policy Πi. The vectorial rewards are converted to scalar using the scalarisation
function Scal, as well as the weight vector associated to the policy Λi (line 8). The learning can be
propagated to the neighbor policies in B(i) (line 9). The loops ensure all target policies are trained
until a stopping criterion. Finally, the trained policies, representing various behaviors are returned
(line 10).

Multiple parts of this algorithm could be replaced in order to enhance the performance of the
overall algorithm. Some candidates, based on variants of MOEA/D, categorized by the parts they
modify are presented below.

Neighborhoods (B,UpdateNeighbors) One of the important aspects of MOEA/D is the concept
of neighbor solutions. It allows MOEA/D to mix multiple neighbor solutions to find potentially
better ones. The definition of neighborhood and crossing methods have been the subject of various
subsequent studies. For example, some algorithms add constraints to the SOPs in the same neigh-
borhood to prevent them from falling onto the same optimal point in order to preserve the diversity
of the solution set. Others have shown that dynamic neighborhood size might be beneficial on some
instances [7].

In MORL, multiple ways to share information between neighbors can be imagined. Some work
already use such mechanisms to reduce the training time when learning multiple policies. For
example, [4] proposes to initialize new policies from close, already trained policies. Other methods
such as sharing experience buffer have been introduced [1]. However, such studies are currently
limited to the weighted sum scalarisation and the effectiveness of neighbor sharing with non-linear
scalarisation remains an open question.

Decomposition methods (Scal) Over time, various scalarisation methods have been proposed
for MOEA/D. The original ones presented in [8] have been enhanced or replaced in subsequent
studies. Additionally, some MOEA/D variants propose to adapt scalarisation methods during the
search, or to combine them in order to benefit from their advantages. Finally, some approaches
aiming at decomposing the decision space instead of the objective space have also been proposed
in MOO.

Multiple salarisation methods have been studied in MORL [2]. The non-linear cases have been
shown to be more challenging since the Markov property does not hold in such environments [3].
However, to the best of our knowledge, no work has been dedicated to combining or adjusting
scalarisations methods, or decomposing the decision space in MORL.

1 It is possible to also include the learned values to apply for example an actor-critic learning algorithm.
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Weight vectors generation (InitializeWeights, Λ) The choice of weight vectors in such tech-
niques can influence both the training time and the performance of the algorithm. Again, multiple
solutions have been proposed as extensions to decomposition-based EAs. Uniform design aims at
distributing the weight vectors uniformly in the objective space while other algorithms propose to
dynamically adjust the weight vectors to focus on less crowded regions in the objective space [7].

In MORL, most of the work relies on uniform design. Though an interesting approach to
generate weights based on the potential improvement of the convex coverage set of learned policies
is proposed in [5]. Again, this technique is restricted to linear scalarisation technique.

3 Conclusion

This article presented an initial attempt to build a framework allowing to transpose concepts
coming from MOO, and in particular MOEA/D variants, to inner loop MORL. It is able to learn
multiple policies, leading to various compromises between the objectives in the problem, and is
designed to be modular and extendable.

From there, some existing works have been briefly presented and leads for MORL/D variants
have been identified. (i.) To the best of our knowledge no MORL work has currently been con-
ducted to share knowledge between neighbors using non-linear scalarisation. (ii.) Many ways to
share information between neighbors are yet to be studied. (iii.) Combination or adaptation of
decomposition methods has not been tried in MORL yet. (iv.) Decision space decomposition is
also a promising lead to ensure diversity of resulting policies. (v.) Weight adjustment techniques
show potential gains as well.

In the future, we aim to use this framework and propose variants based on the identified leads,
or other existing decomposition based techniques. Such algorithms will be used to control robots
in real time.
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Abstract. This article studies the linear ordering problem, with ap-
plications in social choice theory and databases for biological datasets.
Integer Linear Programming (ILP) formulations are available for linear
ordering and some extensions. ILP reformulations are proposed, showing
relations with the Asymmetric Travel Salesman Problem. If a strictly
tighter ILP formulation is found, numerical results justify the quality of
the reference formulation for the problem in the Branch&Bound conver-
gence. The quality of the continuous relaxation allows to design rounding
heuristics, it offers perspectives to design matheuristics.
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1 Introduction

A bridge between optimization and Machine Learning (ML) exists to optimize
training parameters of ML models, using continuous optimization and meta-
heuristics [17, 18]. Discrete and exact optimization, especially Integer Linear
Programming (ILP), is also useful to model and solve specific variants of cluster-
ing or selection problems for ML [5, 6]. In this paper, another application of ILP
to learning is studied: the Linear Ordering Problem (LOP). LOP aims to define
a common and consensus ranking based on pairwise preferences, which is used
in social choice theory. If many applications deal with a small number of items
to rank, bio-informatics applications solve large size particular instances of LOP
as medians of permutations [2, 3]. An ILP formulation is available for LOP with
constraints defining facets [10, 11]. An extension of LOP considering ties relies on
this ILP formulation [2]. Current and recent works focus on consensus ranking
for biological datasets, and use specific data characteristics of these median of
permutation problems for an efficient resolution [1, 13]. This paper analyzes the
limits of state-of-the art ILP solvers to solve LOP instances. Several alternative
ILP formulations are designed using recent results on the Asymmetric Traveling
Salesman Problem (ATSP) from [14]. Comparison of Linear Programming (LP)
relaxations illustrates and validates polyhedral analyses, as in [14]. The practi-
cal implication of polyhedral work is analyzed on the resolution using modern
ILP solvers, as in [4]. Lastly, the quality of LP relaxation is used to design first
variable fixing matheuristics, as in [7]. Variants of variables choices and ILP
Formulations are recalled in Tables 1 and 2.
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Table 1. Definitions of variables in the ILP formulations

Variables Definitions

xi,j ∈ {0, 1} xi,j = 1 iff item i 6= j is ranked before j.
yi,j ∈ {0, 1} yi,j = 1 iff item i 6= j is ranked immediately before j.
fi ∈ {0, 1} fi = 1 iff item i is the first item of the ranking.
li ∈ {0, 1} fi = 1 iff item i is the last item of the ranking.
ni ∈ [0, N − 1] ni − 1 gives the position of item i in the ranking.
zi,j,k ∈ {0, 1} zi,j,k = 1 for i 6= k and j 6= k iff i is ranked before j

and item j is ranked immediately before k.
z′i,j,k ∈ {0, 1} z′i,j,k = 1 for i 6= j 6= k iff i is ranked before j and j is before k.

2 Problem statement and reference ILP formulation

LOP consists in defining a permutation of N items indexed in [[1;N ]], while
maximizing the likelihood with given pairwise preferences. wi,j > 0 denotes the
preference between items i and j: i is preferred to j if wi,j is higher than wj,i. A

ranking is evaluated with the sum of wi,j in the N(N−1)
2 pairwise preferences it

implies. Each permutation of [[1;N ]] encodes a solution of LOP, there are thus
N ! feasible solutions. The reference ILP formulation, given and analyzed in [10,
11], uses binary variables xi,j ∈ {0, 1} such that xi,j = 1 if and only if item i
is ranked before item j in the consensus permutation. With such encoding, one
computes the rank of each item i with 1 +

∑
j 6=i xj,i. ILP formulation from [11]

uses O(N2) variables and O(N3) constraints:

max
x>0

∑

i 6=j

wi,jxi,j (1)

xi,j + xj,i = 1 ∀i < j, (2)

xi,j + xj,k + xk,i 6 2 ∀i 6= j 6= k, (3)

Constraints (2) model that either i is preferred to j, or j is preferred to i.
Constraints (3) ensure that xi,j variables encode a permutation: if i is before j
and j before k, i.e. xi,j = 1 and xj,k = 1, then i must be before k, i.e. xi,k = 1
which is equivalent to xk,i = 0 using (2). Constraints (2) and (3) are proven to
be facet defining under some conditions [11].

Note that some alternative equivalent ILP were formulated. Firstly, the prob-
lem is here defined as a maximization, whereas it is considered as a minimization
of disagreement in [2]. Considering w′i,j = wj,i or w′i,j = M−wi,j , where M is an
upper bound of weights wi,j , allows to transform minimization into maximiza-
tion. Secondly, equations (3) are equivalently written as xi,k − xi,j − xj,k > −1
in [2]. Formulation (3) is symmetrical, and was also used for the ATSP [16]. To
see the equivalence, we use that −xi,k = xk,i − 1:

xi,k − xi,j − xj,k > −1⇐⇒ −xi,k + xi,j + xj,k 6 1
xi,k − xi,j − xj,k > −1⇐⇒ xk,i − 1 + xi,j + xj,k 6 1
xi,k − xi,j − xj,k > −1⇐⇒ xk,i + xi,j + xj,k 6 2
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3 From ATSP to consensus ranking, tighter formulations

LOP and ATSP feasible solutions may be encoded as permutations of [[1;N ]],
order matters for cost computations. If any LOP solution is a permutation, ATSP
solutions are Hamiltonian oriented cycles. LOP solutions can be projected in a
cycle structure, adding a fictive node 0 such that w0,i = wi,0 = 0 opening and
closing the cycle: x0,i = 1 (resp xi,0 = 1) expresses that i is the first (resp last)
item of the linear ordering. This section aims to use polyhedral work from ATSP
to tighten the reference formulation for LOP [14]. For ATSP, binary variables
yi,j ∈ {0, 1} are defined such that such that yi,j = 1 if and only if j is next
item immediately after item i, for i 6= j ∈ [[1;N ]]. Equivalently to consider a
fictive node 0, we define binary variables fi, li ∈ {0, 1} such that fi = x0,i = 1
(resp li = xi,0 = 1) denotes that item i is the first (resp last) in the linear
ordering. Having these variables x, y, l, f induces another ILP formulation for
LOP, denoted SSB for ATSP [16]:

max
x,y,f,l

∑

i 6=j

wi,jxi,j (4)

xi,j + xj,k + xk,i 6 2 ∀i 6= j 6= k, (5)

yi,j 6 xi,j ∀i 6= j, (6)

xi,j + xj,i = 1 ∀i < j, (7)∑
i fi = 1 (8)∑
i li = 1 (9)

li +
∑

j 6=i yi,j = 1 ∀i, (10)

fi +
∑

j 6=i yj,i = 1 ∀i, (11)

Objective function differ from ATSP, where a weighted sum of y, f, l variables
is minimized [16]. x variables were used only to cut sub-tours for ATSP, whereas
there are necessary for LOP to write the objective function. The constraints are
identical for ATSP and LOP once variables x, y, f, l are used. Constraints (5) and
(7) are identical with (2) and (3). Constraints (10) and (11) are ATSP elemen-
tary flow constraints: for each item there is a unique predecessor and a unique
successor, 0 as node successor or predecessor implies using variables fi, li. Unic-
ity constraints (8) and (9) are ATSP elementary flow constraints arriving to and
leaving from the fictive node 0. SSB can be tightened in the SSB2 formulation,
replacing constraints (5) by tighter constraints (12) from [16]:

∀i 6= j 6= k, xi,j + yi,j + xj,k + xk,i 6 2 (12)

Sub-tours between two cities (or items) may have a crucial impact in the res-
olution, as in [5]. Having variables x and constraints (5) and the tighter variants
implies the other sub-tours between two items. Indeed, yi,j+yj,i 6 xi,j+xj,i = 1.
Constraints (13) are sub-tour cuts between node 0 and each item i > 0, these
are known to tighten strictly SSB2 formulation [16]:

∀i, fi + li 6 1 (13)
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Another formulation was proposed for ATSP without constraints (5), but
with linking constraints yi,j − xk,j + xk,i 6 1, to induce the same set of feasible
solution [9]. These constraints can be tightened in two different ways:

∀i 6= j 6= k, yi,j + yj,i − xk,j + xk,i 6 1 (14)

∀i 6= j 6= k, yi,j + yk,j + yi,k − xk,j + xk,i 6 1 (15)

Tightening only with (14) and (15) induce respectively GP2 and GP3 formu-
lations for ATSP [9]. A strictly tighter formulation, denoted GP4, is obtained
with both sets of constraints [14]. A strictly tighter formulation is also obtained
adding (12) to (14) and (15) for ATSP. Numerical issues are to determine whether
the quality of LP relaxation is significantly improved after tightening.

4 Other ILP reformulations

In this section, alternative ILP reformulations for LOP are provided, adapting
other formulations from ATSP. Firstly, a formulation with O(N2) variables and
constraints is given, before three-index formulations with O(N3) variables.

4.1 ILP formulation with O(N2) variables and constraints

Similarly with MTZ formulation [12], O(N) additional variables ni ∈ [[0, N − 1]]
can directly indicate the position of the item in the ranking :

max
x,n>0

∑

i 6=j

wi,jxi,j (16)

xi,j + xj,i = 1 ∀i < j, (17)

nj +N × (1− xi,j) > ni + 1 ∀i 6= j, (18)

ni +
∑

j 6=i

xi,j = N − 1 ∀i, (19)

ni ∈ [0, N − 1] ∀i (20)

Note that as for MTZ formulation, variables ni can be declared as continuous,
feasibility of (18) and bounds (20) implies ni ∈ [[0, N − 1]]. Objective function
(16) and constraints (17) are unchanged. Constraints (18) are similar with MTZ
constraints: if i is ranked before j, i.e. xi,j = 1, then it implies nj > ni + 1, N
is a ”big M” in this linear constraint. If (17) and (18) are sufficient to induce
feasible solutions for the ILP, constraints (19) complete (18) without using any
”big M”. Indeed, ci =

∑
j 6=i xi,j counts the number of items after i, so that for

each i, ci+ni = N−1. As big M constraints are reputed to be weak and inducing
poor LP relaxations, a numerical issue is to determine the difference with the
continuous relaxation when relaxing also constraints (18) and (19). Note that
this relaxation has trivial optimal solutions, considering xi,j = 1 and xj,i = 0
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for i 6= j such that wi,j > wj,i. Hence, following upper bound is valid, and also
larger than any LP relaxation for LOP:

UB =
∑

i<j

max(wi,j , wj,i) (21)

4.2 Three-index Flow formulation

Another three index formulation, tighter than GP2, GP3 and GP4, was proposed
for ATSP [9]. Adapting this formulation to LOP, one uses binary variables zi,j,k ∈
{0, 1} for i 6= k and j 6= k defined with zi,j,k = 1 if and only if i is ranked
before j (not necessarily immediately before) and j is ranked immediately before
k. First and last items are still marked with binaries fi, li ∈ {0, 1}. Binaries
xi,j , yi,j ∈ {0, 1} are then defined by xi,j =

∑
k zi,j,k + lj and yi,j = zi,i,j .

max
z,l,f>0

∑

i6=j

wi,j

(
li +

∑

k

zi,j,k

)
(22)

li +
∑

k zi,j,k + lj +
∑

k zj,i,k = 1 ∀i < j, (23)∑
i fi = 1 (24)∑
i li = 1 (25)

li +
∑

j 6=i zi,i,j = 1 ∀i, (26)

fi +
∑

j 6=i zj,j,i = 1 ∀i, (27)

zi,j,k 6 zj,j,k ∀i, j, k, (28)

Constraints (23) and (24)-(27) are respectively constraints (7) and (8)-(11) re-
placing x, y occurrences by the linear expressions using z, l variables. A simi-
lar operation allows to write the objective function using z, l variables. Con-
straints (28) model that zi,j,k = 1 implies that j is ranked just before k and
thus zj,j,k = 1. This formulation has O(N3) variables and O(N3) constraints
only because of constraints (28). It is possible to preserving the validity of the
ILP while having only O(N2) constraints replacing flow constraints (28) by the
aggregated version:

∀j, k,
∑

i

zi,j,k 6 Nzj,j,k (29)

4.3 Another three-index flow formulation

z′i,j,k ∈ {0, 1} defined for i 6= j 6= k with z′i,j,k = 1 if and only if items i, j, k are
ranked in this order. In this ILP formulation, we keep variables xi,j , it induces
the valid ILP formulation for LOP:
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max
x,z>0

∑

i6=j

wi,jxi,j (30)

3z′i,j,k 6 xi,j + xj,k + xi,k ∀i 6= j 6= k (31)

z′i,j,k + z′i,k,j + z′j,i,k + z′j,k,i + z′k,j,i + z′k,i,j = 1 ∀i 6= j 6= k, (32)

Constraints (31) are linking constraints among variables x, z: z′i,j,k = 1 im-
plies xi,j = xj,k = xi,k = 1. Constraints (32) express that each triplet i 6= j 6= k
is assigned in exactly one order in a permutation, replacing constraints of type
xk,i +xi,j +xj,k 6 2. Constraints (32) induce that this ILP formulation has also
O(N3) variables and O(N3) constraints. Note that a similar constraint can be
defined as cut for the previous ILP formulation, with an inequality:

zi,j,k + zi,k,j + zj,i,k + zj,k,i + zk,j,i + zk,i,j 6 1 (33)

Table 2. Summary of implemented formulations, their denomination, the sets and
asymptotic number of variables and constraints

Formulation Variables Constraints nbVariables nbConstraints

LOP ref x (2), (3) O(N2) O(N3)

LOP SSB2 x, f, l, y (6) - (11), (12, (13) O(N2) O(N3)
LOP GP3 x, f, l, y (6) - (11), (15) O(N2) O(N3)

LOP MTZ x, n (17), (19) O(N2) O(N2)

LOP flowGP z, f, l (23)- (27),(28) O(N3) O(N3)
LOP flowGP aggr z, f, l (23)- (27),(29) O(N3) O(N2)
LOP flow2 x, z′ (31), (32) O(N3) O(N3)

5 Computational experiments and results

Numerical experiments were proceeded using a workstation with a dual pro-
cessor Intel Xeon E5-2650 v2@2.60GHz, for 16 cores and 32 threads in total.
Cplex version 20.1 was used to solve LPs and ILPs. Cplex was called using
OPL modeling language and OPL script. LocalSolver in its version 10.5 was
used as a heuristic solver benchmark to compare primal solutions when opti-
mal solutions are not proven. The maximal time limit for Cplex and Local-
Solver was set to one hour, Cplex was used with its default parameters. For
reuse and reproducibility, code and generated instances are available online at
https://github.com/ndupin/linearOrdering.

5.1 Data generation and characteristics

It was necessary to generate specific instances for this study. As mentioned by
[1, 13], instance characteristics are crucial in the resolution difficulty. In many
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social choice applications and datasets, N is small, exact resolution with formu-
lation LOP ref is almost instantaneous. For the biological application, N is very
large but median of permutations among similar permutations is easier than gen-
eral instances. In the extreme case where wi,j coefficients encode a permutation
(median of 1-permutation, trivial problem), trivial bounds UB give the optimal
value, and LP relaxations of every ILP formulation give the integer optimal so-
lution. For this numerical study, as in [14], quality of polyhedral descriptions are
analyzed on the implications on the quality of LP relaxation using diversified
directions of the objective function. Three generators were used for this study:

• aleaUniform (denoted aUnif): wi,j for i 6= j are randomly generated with a
uniform law in [[0, 100]].

• aleaSum100 (denoted aSum): uniform generation in [[0, 100]] such that wi,j +
wj,i = 100: for i < j wi,j is randomly generated in [[0, 100]] and wj,i is then
set to wj,i = 100− wi,j .

• aleaShuffle (denoted aShuf): max(N/2, 20) random permutations are gen-
erated (with Python function shuffle), wi,j are then computed using Kendall-
τ distance and Kemeny ranking, as in [1–3].

A fourth generator was coded, as in aleaShuffle, but generating small pertur-
bations around a random permutation. Actually, the results were very similar
for ILP formulations to the 1-median trivial instances. Real-life structured in-
stances for median of permutations are much easier than random instances. The
generators allow to analyze the impact of structured instances.

Number of items N was generated with values N ∈ {20, 30, 40, 50, 100}. For
N ∈ {20, 30, 40}, the Best Known Solution (BKS) are optimal solutions proven
by Cplex. For N ∈ {50, 100}, LocalSolver always provides the BKS. There is also
no counter-example where LocalSolver does not find a proven optimal solution in
one hour, we note that LocalSolver is also very efficient in short time limits. For
each generator and value of N , 30 instances are generated and results are given
in average for each group of 30 similar instances, with the denomination XX−N
where XX ∈ {aUnif,aSum,aShuf}. Lower and upper bounds v(i) on instance i
are compared with gaps to BKS, denoted BKS(i):

gap =
| v(i)− BKS(i) |

BKS(i)
(34)

5.2 Comparing LP relaxations

To analyze the quality of polyhedral descriptions recalled in Table 2, Table 3
presents gaps of LP relaxations of ILP formulations for LOP and the naive
upper bound (21). Table 4 presents the computation time for LP relaxations, to
highlight the impact of the number of variables and constraints recalled in Table
2. These tables illustrate the difficulty of instances, aShuf are easy instances with
good naive upper bounds and LP relaxations. Datasets aSum and aUnif induce
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Table 3. Comparison of the average gaps to the BKS for the LP relaxations of formu-
lations recalled in Table 2 and the naive upper bound (21)

Instances (21) ref/SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 12,86 % 0,02 % 10,49 % 10,84 % 5,22 % 11,53 % 12,86 %
aUnif-30 14,86 % 0,17 % 13,20 % 13,39 % 7,34 % 13,98 % 14,86 %
aUnif-40 16,98 % 0,60 % 15,68 % 15,78 % 9,22 % 16,16 % 16,98 %
aUnif-50 17,84 % 1,12 % 16,80 % 16,86 % 10,22 % 17,17 % 17,84 %
aUnif-100 21,65 % 3,17 % 21,10 % 21,11 % - 21,25 % 21,65 %

aSum-20 19,00 % 0,05 % 15,56 % 16,13 % 7,26 % 17,23 % 19,00 %
aSum-30 21,96 % 0,31 % 19,53 % 19,84 % 10,25 % 20,45 % 21,96 %
aSum-40 24,40 % 1,18 % 22,52 % 22,70 % 12,53 % 23,21 % 24,40 %
aSum-50 26,24 % 2,25 % 24,71 % 24,83 % 14,16 % 25,23 % 26,24 %
aSum-100 31,44 % 4,97 % 30,64 % 30,65 % - 30,84 % 31,44 %

aShuf-30 1,93 % 0,00 % 1,39 % 1,42 % 0,29 % 1,89 % 1,93 %
aShuf-40 1,44 % 0,00 % 1,18 % 1,18 % 0,42 % 1,42 % 1,44 %
aShuf-50 1,41 % 0,00 % 1,18 % 1,18 % 0,44 % 1,40 % 1,41 %
aShuf-100 1,80 % 0,02 % 1,65 % 1,55 % - 1,80 % 1,80 %

more difficulties with worse continuous bounds, and aSum is even more difficult
than aUnif.

Contrary to ATSP where GP2, GP3, SSB2 are not redundant [14], (3) induces
much better LP relaxations for LOP than (14) and (15). Adding (14) and (15) in
ILP formulations with (3) or (12) does not induce any difference in the quality
of LP relaxation. It explains why in Table 2, we remove constraints of type (3)
to compare quality of LP relaxations. An explanation is the different nature of
LOP and ATSP problems because of different objective functions: if polyhedrons
defined by constraints are identical, objective functions with weighted sums in
x or y changes the projection on the space of interest.

Flow formulation flow-GP improves significantly the quality of LP relaxation
of GP3, as for the ATSP, but it is still significantly worse than SSB formulations.
Computation time of LP relaxation is much higher with flow-GP, computations
were stopped in one hour without termination for N = 100. With aggregation
(29) instead of (28), LP relaxation is computed quickly, but the quality of LP
relaxation is dramatically decreased, the continuous bounds are close to the
naive upper bounds (21). MTZ adaptation has the quickest LP relaxation, but
the continuous bounds are close to the ones of GP3. Last flow formulation always
provides exactly the naive upper bounds (21), constraints (33) do not tighten
flow-GP formulation, this result differ from [15].

LP relaxation of LOP ref is of an excellent quality, which illustrates polyhe-
dral results and proven facets from [11]. In Table 2, LOP ref and SSB2 formu-
lations have the same values: except on three instances, LP relaxation are the
same (with a tolerance to numerical errors on the last digit). On instance num-
ber 27 in aUnif-20 and instances number 17 and 29 in aSum-20, SSB2 improves
the reference formulation around 0.01%, making a difference of one unit in the
integer ceil rounding of the continuous relaxation. With additional experiments,
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Table 4. Comparison of the average time (in seconds) to compute LP relaxations for
ILP formulations recalled in Table 2

Instances ref SSB2 GP3 MTZ flow-GP flow-GP-agg flow2

aUnif-20 0,04 0,14 0,32 0,00 1,21 0,06 0,07
aUnif-30 0,28 0,75 1,08 0,01 7,62 0,18 0,25
aUnif-40 0,49 2,27 3,58 0,03 38,60 0,53 0,83
aUnif-50 0,95 5,59 10,55 0,12 173,49 1,36 2,32
aUnif-100 26,63 278 839 1,04 - 18,24 54,61

aSum-20 0,04 0,17 0,33 0,00 1,20 0,06 0,07
aSum-30 0,29 0,77 1,08 0,01 7,48 0,19 0,25
aSum-40 0,50 2,12 3,43 0,03 37,10 0,55 0,83
aSum-50 0,95 5,65 10,74 0,12 168,24 1,40 2,27
aSum-100 27 282,46 819 1,75 - 17,40 55,63

aShuf-30 0,06 0,24 1,04 0,01 6,18 0,18 0,27
aShuf-40 0,16 0,84 3,73 0,04 26,86 0,49 0,74
aShuf-50 0,33 2,17 11,63 0,13 98,88 1,32 2,13
aShuf-100 17,7 353,5 1360 1,76 - 16,45 51,34

the difference is only due to (3) instead of (12), no difference was observe adding
only (13). These results proves that LOP SSB2 is in theory strictly tighter than
LOP ref, but with small and rare improvements.

5.3 Comparing Branch&Bound convergences

This section aims to compare the impact of modeling LOP with LOP ref and
LOP SSB2, in the Branch&Bound (B&B) convergence. Table 5 analyzes the im-
pact of Cplex cuts and heuristics at the root node, before branching in the B&B
tree. If LOP SSB2 improves slightly LP relaxation quality, the open question
is to determine if additional variables and constraints help modern ILP solvers
detecting other structures for cut generation, as in [4]. For LOP, computations
at the root node of B&B tree are much slower with SSB2, coherently with the
higher number of variables, but the efficiency of cuts and primal heuristics is sig-
nificantly worse with the heavier SSB2 formulation. Having a larger ILP model,
slower matrix operations for generation of cutting planes are needed by Cplex,
and this stop earlier cuts that would have been generated using LOP ref for-
mulation, the size of ILP matrix is crucial here. Note also that Table 5 shows
that few improvement of LP relaxation is provided at the root node of B&B
tree, cuts are not very efficient to improve the LP relaxation, which was of a
good quality. These elements explain the difference in the B&B convergence in
one hour allowing branching, LOP ref formulation is largely superior. For some
instances with N = 40 or N = 50, LOP ref can converge in ten minutes whereas
a significant gap between lower and upper bounds remains after one hour for
LOP SSB2. This definitively validates the LOP ref formulation as baseline ILP
model for [2].
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Table 5. Comparison of Lower Bounds (LB) and Upper Bounds (UB) of formulations
LOP ref and LOP SSB2 after Cplex cuts and heuristics at the root node (i.e. before
branching). Common UB with the LP relaxation are also provided for comparison.

LP UB LB time UB LB time
ref,SSB2 ref SSB2

aUnif-20 0,02% 0,00% 0,00 % 0,1 0,00 % 0,00 % 0,4
aUnif-30 0,17% 0,00% 0,00 % 1,5 0,09 % 0,50 % 14
aUnif-40 0,60% 0,44% 0,22 % 30,5 0,52 % 4,58 % 159
aUnif-50 1,12% 0,96% 0,82 % 212,9 0,98 % 5,27 % 1336
aUnif-100 3,17% 3,07% 5,49 % 3600 3,15 % 7,37 % 3600

aSum-20 0,05% 0,00% 0,00 % 0,12 0,00 % 0,00 % 0,55
aSum-30 0,31% 0,02% 0,02 % 2,0 0,16 % 0,79 % 20
aSum-40 1,18% 0,75% 0,32 % 64 0,95 % 5,08 % 296
aSum-50 2,25% 1,82% 0,95 % 297 1,95 % 6,72 % 989
aSum-100 4,97% 4,82% 6,87 % 3600 4,95 % 9,62 % 3600

aShuf-30 0,00% 0,00% 0,00 % 0,14 0,00 % 0,00 % 0,86
aShuf-40 0,00% 0,00% 0,00 % 0,37 0,00 % 0,00 % 2,9
aShuf-50 0,00% 0,00% 0,00 % 0,90 0,00 % 0,00 % 8
aShuf-100 0,02% 0,02% 0,02 % 477 0,02 % 6,02 % 3395

5.4 Variable Fixing heuristics

The excellent quality of the LP relaxation with LOP ref formulation allows to
use continuous solutions of LP relaxation to design primal heuristics as in [7].
Variable Fixing (VF) denotes here a heuristic reduction of the search space based
on the LP relaxation, to set integer values to variables in the ILP resolution. One
may use a VF preprocessing for variables with an integer value in the continuous
relaxation, expecting that these integer decisions are good. Generally, it makes a
difference to apply VF preprocessing on zeros and ones in the LP relaxation, as
in [7]. There are in general many possibilities of VF preprocessing, considering
also specific rules to select a subset of variable to fix [7].

For LOP, imposing xi,j = 1 implies fixation xj,i = 0 with constraints (2).
Note also that constraints (3) may induce having continuous solution with vari-
ables xi,j = xj,k = xk,i = 2/3, so that rounding to ones variables lower that 2/3
induce direct infeasibility on the corresponding (3) constraint. This property
does not hold rounding to ones variables that are superior to 0.7 Hence, two VF
strategies were implemented, on one hand fixing the integer value, and on the
other hand considering the threshold for rounding to 0.8. Actually, there were
slight differences for these two strategies. Experiments were also done using the
quick MTZ relaxation for the LP relaxation, this was significantly degrading the
performance of the VF heuristic.

Table 6 compares the gap to BKS and computation time using the VF pre-
processing to LOP ref formulation. For small and easy instances where LOP ref
gives optimal solutions, the degradation of the objective function is small with
the VF heuristic, speeding up significantly the computation time. For the largest
instances with N = 100, VF matheuristic is significantly better that the exact
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resolution, illustrating the difficulty of the ILP solver to find good primal solu-
tions with its primal heuristics. The primal solutions of matheuristic are in this
case also significantly worse than the ones of LocalSolver, the VF speed up is
not sufficient to reach an advanced phase of the B&B convergence.

Table 6. Comparison of gaps to BKS and computation time of Cplex in ILP solving
using the reference formulation, without and with Variable Fixing (VF) preprocessing
on integer values in the LP relaxation of the reference formulation. BKS are optimums
for N 6 40, for N > 50 BKS were given by LocalSolver

LB time (sec) LB time (sec)
Instances ref ref + VF

aUnif-20 0,00 % 0,1 0,01 % 0,04
aUnif-30 0,00 % 1,5 0,04 % 0,62
aUnif-40 0,00 % 30,5 0,17 % 13
aUnif-100 5,49 % 3600 2,36 % 3600

aSum-20 0,00 % 0,13 0,05 % 0,06
aSum-30 0,00 % 2,1 0,09 % 0,77
aSum-40 0,00 % 63,5 0,43 % 12,7
aSum-100 6,87 % 3600 3,14 % 3600

aShuf-30 0,00 % 0,13 0,00 % 0,03
aShuf-40 0,00 % 0,37 0,00 % 0,08
aShuf-50 0,00 % 0,92 0,00 % 0,12
aShuf-100 0,00 % 1820 0,00 % 35,7

6 Conclusions and perspectives

If the reference ILP formulation seemed to be improvable using ATSP results,
only a slightly tighter ILP formulation is obtained after this reformulation work.
Analyzing the ILP convergence with a modern ILP solver shows that the LP
relaxation is of an excellent quality with the reference formulation, but is fewly
improved after. Also, primal heuristics are not efficient on the problem, a ba-
sic VF matheuristic improves significantly the primal solutions for difficult in-
stances. Furthermore, this paper illustrates the graduated difficulty of instances,
structured instances from the biological application as median of permutations
are easier that random instances of LOP.

These results offer perspectives for the biological application also with the
extension with ties [1]. Matheuristics can be used in this context, combined to
specific reduction space operators related to the easier median of permutation
instances [1, 13]. Perspectives are also to combine matheuristics and local search
approaches which are efficient for the problem, as shown by LocalSolver bench-
mark on this study, and also by [8].
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Abstract. The aim of this study is to analyze the literature gap be-
tween two different fields: Machine Learning ML and Optimization OPT
in the health-Care sector. Previously, very few efforts have been made to
examine the interaction between both fields in this sector. To this end,
this paper first examines the existing approaches combining the two axes,
then presents an overview of solutions proposed to solve health-care prob-
lems. Finally, an exploratory study is proposed to show the necessity and
importance of sustainable and intelligent systems based on ML & OPT
for hospital logistic problems.
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1 Introduction

The increasing amount of data being gathered in health-care systems and the
competitive context of our modern medicine, are leading research to new emerg-
ing challenges and directions. Not only is high health-care cost a challenge, many
other important challenges have arisen such as the patient’s treatment effective-
ness and the care-workers quality of work life.

In order to address such complex issues, we observe today more and more
research works which deal first with the integrative aspect (throughout the data
collection and analysis until the problem modeling) using techniques derived
from Artificial Intelligence (AI) and Machine Learning (ML); then which cover
the paradigm of Optimization (OPT) to find the best possible outcomes.

Indeed, ML techniques have advanced rapidly and been successfully applied
to deal with the increasingly available healthcare data. For instance,researchers
believe using ML will reduce the high complexity of disease diagnosis and treat-
ment outcome risk prediction. This complexity stems often from multiple data
sources in the health-care environment (medical records, patient surveys and
comments, genomic information, administrative databases, etc.); or for exam-
ple real-time predictions in the event of anomaly or incident detection in the
database. Besides, all these data need to be exact and very accurate to be
practically taken into account for treatment. This is why ML techniques are
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promising and have great potential to provide accurate predictions or discover
new knowledge in healthcare.

On the other hand, research and investment in OPT have rapidly expanded
in all the fields over the last decade. In fact, OPT is a family of algorithms that
allocate resources while minimizing costs or maximizing benefits in the presence
of diverse constraints. In the last decade, OPT is becoming more and more
powerful to solve NP-hard health-care problems. For instance, an OPT method
can be used to reduce scheduling errors by allocating efficiently nurses to specific
surgical cases, to maximize time used in the operating room, to minimize the
transportation costs of hospital operations, etc.

While the two domains having more evolved independently from each other,
their classical methods have become increasingly inadequate with the recent
data explosion. Then, to deal with the exponential increase of data volume and
complexity, industry and research communities have paid a lot of attention to
the synergy and interplay between ML and OPT. In the health care industry in
particular, the interaction of two domains have been very little studied . This
raises two questions: Why and when an OPT and ML intersection is necessary
for solving decision-making problems? What are the impacts of such intersection
on health care organizations ?

Motivated by the originality of such special topic, our main idea behind this
work is to analyze the intersection between ML and OPT in a generic context,
to further analyze the state-of-the-art regarding health-care problems and to
present an our current exploratory study in this sector.

2 OPT and ML: difference and relationship

Over many years, ML and OPT fields have provided great theoretical insights,
offered many successful methods and found practical applications in all areas of
science. In fact, ML analysts prefer simpler algorithms that work in reasonable
computational time for specific classes of problems. Thus, ML research advances
and develops rapidly, which has made a lot of works applied in various popular
fields such as image recognition, recommender systems and anomaly detection,
natural language processing, etc. In turn, OPT researchers often address more
complex (or NP-hard) problems by deriving the core resolution process and using
specific optimizers to solve them. OPT methods and approaches have attracted
much attention in almost all decision-making fields.

Today, in order to deal with the exponential increase of data volume and
complexity, researchers have paid a lot of attention to the synergy and interplay
between ML and OPT. Indeed, the two scientific disciplines are deeply inter-
woven: On one hand, OPT lies at the heart of ML in the sense that most ML
problems, once formulated, can be solved as OPT problems. On the other hand,
OPT concepts and methods equip ML researchers with tools for training large
families of models. Besides, modern OPT algorithms are using ML theories and
techniques to improve their efficiency. Recently, numerous research works have
been focused on the developments of new techniques and tools inspired at the
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same time by the ML principles and OPT concepts. In this context, we pro-
pose to give some classification and summary of the most popular studies, which
can offer guidance and inspiration to contribute in both domains. Thus, we first
suggest to distinguish two major types of research directions:

1. OPT for ML: The first question is how the combination with OPT can help
ML researchers to rapidly develop new tools for more complex families of
learning models? The second question is how to use OPT methods to solve
specific ML problems? For instance, how to yield optimal estimations or pre-
dictions based on large or dynamic collected data?

2. ML for OPT: The question here is how to improve the OPT algorithmic
structure, process and strategies by means of ML techniques? An interesting
challenge involves performance measurements problems namely, how to use
ML models to efficiently report and assess the results quality of a particular
OPT algorithm?

In the following paragraphs, we seek to examine a brief state-of-the-art of existing
approaches along the two axes.

2.1 OPT for ML

This section presents the recent advances in ML community, especially the stud-
ies that use OPT principles or methods to exploit novel ML branches. A wide
range of works aimed at extending well-known OPT methods to create novel
mixed learning models and paradigms [28]. For instance, [30] discussed the ex-
tensive use of mathematical programming methods in ML. In [9], convex opti-
mization methods are applied for nonlinear kernel approximation or classification
problems. In [16], constraint-based OPT methods are developed for incorporat-
ing domain knowledge into graphical learning models. In [20], parametric or
hybrid OPT methods are used to find the optimal solution for simulation-based
problems. Moreover, many researchers have discussed the role of some analytical
methods of optimization in very popular fields like neural network (NN), rein-
forcement learning, meta learning, etc. They have shown that the development
of optimization algorithms in specific ML fields can be inspiring to perform more
informative learning [29]. For example, learning the parameters of complex NNs
is one of the most well studied problems in the field of ML. [3] [18] have proposed
an adaptive gradient-based methods for online NN learning. Unfortunately,the
gradient descent scheme can result in poor learning training and performance in
the case of NNs that have multiple hidden layers (i.e. deep networks). Thus, re-
cent works have focused on the combination of new layer-wise training methods
with stochastic gradient-based algorithms (i.e. which are first-order optimization
approach) [10]. The results of such a combination lead to new general high-order
optimizers which can efficiently learn deep models without any need for pre-
training [26] [21]. Some problems are emerging when applying these adaptive
optimizers. For example, the learning rate can be oscillating in the later training
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stage, which may lead to non-converging problem. Other popular methods that
have a significative influence on various ML fields are: optimization-based meta-
learning methods, Adam optimization for image super resolution, trust-region
optimization for deep reinforcement learning, etc [29].

2.2 ML for OPT

In turn, ML has highly motivated advances in the OPT community by allowing
the develop of new effective methods. This original research axe presents modern
algorithms including small changes in their underlying core process that enable
high computing power. Then, in order to promote the development of OPT
algorithms, a series of effective learning models were put forward, which have
improved their performance and efficiency [14][32].

From the perspective of integrating the ML techniques into optimization
methods, we suggest to divide research interests into three categories according
to the chosen step integration [2]:

i) Before the model mathematical definition, ML techniques can be used to
learn for example uncertain and missing data in order to incorporate ade-
quate constraints into the model.

ii) During the selection and optimization process in order to enforce the opti-
mality conditions and to converge to optimal solution(s) more efficiently.

iii) In the process of algorithms validation by paying attention to the character-
istics of their parameters.

Many of the papers blend these different categories and novel methods have
been successfully designed and applied to NP-hard problems [8] [33]. Recently,
evolutionary machine learning (EML) took the interest of many researchers [7]
since they have shown performance in many difficult problems. [14] published
a survey about the use of statistics and machine learning for the distributed
optimization. [15] reviewed existing literature on the combination of metaheuris-
tics with machine learning methods and then introduces the concept of learn-
heuristics, a novel type of hybrid algorithms. Recently, [32] proposed a novel
taxonomy of data-driven meta-heuristics.

Several questions remain in this research track, particularly in the case of NP-
difficult OPT problems. In the health field which is currently booming, combi-
nation of OPT and ML could help to produce more meaningful data and results
for complex issues. The next section presents an overview of studied health-care
problems in the literature and shows the impact of innovative solutions in this
sector.

3 Health-care problems: A literature review

In the literature, previous research has concluded that major problems in the
health-care sector are organizational and are related to patient safety, waiting
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times and integration. [24] discussed for example the old modes of data collec-
tion/storage and the existing working practices to identify problems or needs in
hospitals. Many other researchers [13] [6] proposed innovative solutions according
to the organizational challenges. The findings of these studies are interesting in
the sense of organizational conditions and requirements necessary for delivering
health care. From a social viewpoint, there is a greater patient satisfaction.

Thereafter, many researchers [23] [5] have focused on the health-care logis-
tics that have an important role in optimizing the cost and quality of public
health. For instance, hospital logistic is considered as a complex optimization
problem characterized by a diversity of activities, services, products, and a lot
of internal and external information flows. Otherwise, logistic costs may affect
more significantly the hospital expenditure.

With regard to the economic aspect, some studies [12] have attempted to
reduce the operational costs by adopting new optimal strategies for medical staff
who spent frequently time on indirect care activities often related to logistics.
Other studies [25] have tried to analyse the competencies that are essential for
effective management of logistics by applying a classification approach.

Most researches have concentrated on the transportation issue in order to
deal with the complexity of logistic flows. In fact, high transportation costs can
directly impact the logistics costs. In the literature, many different health-care
routing problems have been treated [11] [4] [17]. More precisely, the aim of such
OPT problems is to cope with various care demands, including different types of
services or medical products, in different designed areas. Many constraints have
been also considered such as the number of vehicles used, the occupancy degree,
the number of pickup and delivery points, etc.

Although transportation is one of the most important sectors, it is often cited
as barriers to health-care access. Such barriers may lead to missed or delayed care
treatments, a lack of medication use, and consequently poorer management of
chronic illness and heath outcomes. [31] have discussed and measured the impact
that transportation interventions have on chronic disease care. More recently,
authors paid attention to the environmental impact of transportation processes
and logistics flows in health-care industry [27]. A great number of studies have
proposed sustainable health-care design by including extended knowledge of op-
erations and supply chain management [22], the automation of internal logistics
to improve efficiency [19]. Today, intensive collaborative research and automobile
manufacturers focus on improving and increasing investments in the innovative
transportation of zero-emission vehicles in all health-care sectors.

To this end, the aim of our exploratory study is to analyze the impact of
sustainable transportation on complex health-care problems and to identify new
interesting research directions in this sector.

4 Exploratory Study

The problem we are addressing is first inspired by the daily challenges and logis-
tical activities that health-care systems face, in particular, in hospital sector. One
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of the major challenges is to deal with the complexity of managing a very diverse
flow of materials from the hospital stocks to different care units and patients.
Secondly, aware of the importance of economic, social and environmental chal-
lenges, we focus our attention on the issue of sustainable transport operations
using automated and/or electric vehicles. Thanks to the undeniable benefits of
this type of vehicle (safety, autonomy, time saving, etc.), its deployment in the
health-care and hospital sector becomes essential.

Hence, the majority of existing works relating to sustainable routing problems
are often dedicated to single-objective problems and with few management and
environmental constraints. Comparing to theses works, we propose to resolve a
problem variant reflecting more the complexity occurring in practice. We recently
published a paper that addresses a problem of this nature [1].

Then, our motivation behind this exploratory study is to develop a sustain-
able decision-making system for hospital logistics while allowing a high quality
care without exhausting limited natural resources. Then, the basic idea is to
combine two problem categories: Hospital logistic management problems and
Electric and automated routing problems. More precisely, this study arose from
the question of fleet dimensioning for daily route planning at the hospital com-
plex of Troyes (France). The hospital logistic network is composed of the daily
transport of food trolley, linens (dirty and clean), pharmaceutical and medical
products. In this context, a fleet of heterogeneous vehicles is used by a group of
drivers every day to pick up these different equipments and products from one
location and then to deliver them to another location. The fleet is heterogeneous
in terms of capacity, fixed cost and fuel mileage. Besides, some services exploit
a set of automated guided vehicles (AGV) to ensure automatic transport by
trolleys of foodstuffs and products (meals, linen, pharmaceutical products, etc).

Main objectives for such problems are minimizing the total cost in terms of
distance/time, minimizing the number of vehicles or maximizing the number of
served care-services or patients. Many constraints can also be considered such
as the number of drivers or vehicles used, the occupancy degree, the number of
pickup and delivery points, the time of break or time of service, etc. Other issues
can be related to electric vehicles like the recharging and discharging strategies.

Therefore, to address the complexity and diversity of this topic, important
questions focus on:

– How to integrate all the data and constraints related to hospital issues and
electric vehicle or automated technologies ?

– How to process real-time data from multiple sources which can be uncertain
or with a lot of variability ?

– How to develop an optimization model considering the best compromises
between conflicting objectives (in terms of cost, quality of service, autonomy,
etc.) ?

Therefore, the main scientific purpose will be to develop an intelligent decision-
making system for hospital logistics. We believe using ML and OPT techniques
informed by all these data will improve the efficiency and inform better decision
making.
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The first phase will be to address the predictive and integrative aspects of
data using techniques derived from ML, through the collection and analysis of
real-time data, their interpretation and processing. Once this phase is completed,
the objective is to design a mathematical programming model integrating the
objectives and the different constraints for this type of problem (NP-hard). The
next phase will be to develop a decision support system that covers the opti-
mization and resolution of such problems in order to determine the best possible
solution(s). Several questions remain on this subject, namely the choice of OPT
and ML methods to be used, the level of integration of learning into the opti-
mization process. Finally, this study opens the door to many interesting issues
and perspectives in this active research area.
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1 Introduction

The use of fossil energy resources affects global warming. To tackle climate change, most energy
consumers (e.g. industry, residential, transportation) are encouraged to play an active role by
reducing their demands or producing energy. In this context, energy communities have discovered
that more can be done in this regard by acting collectively [1]. Energy communities were created
as local initiatives to accelerate the energy transition while providing economic, environmental,
technical, and social benefits to their members. Today, more than 3500 energy communities have
been constructed in the European Union [2].

Many researchers around the world addressed this concept deal with the study of energy self-
consumption in energy communities. Few of these, tackled the comparison between the different
configurations of the energy self-consumption based on different criteria [3, 4]. In this study, our
objective is to propose different configurations and make a comparison.

The Multi-Criteria Decision Making (MCDM) methods have been applied to different types
of energy problems during the past years. The advantage of these methods is that they allow the
evaluation of multiple criteria, even contradictory sometimes. These methods have been applied
to different domains, such as project selection and implementation of the installation of energy
production. For example, Salameh et al [5] use the Preference by Similarity to Ideal Solution
(TOPSIS) technique to choose from nine hybrid renewable energy solutions to meet power and
hydrogen demands in a Saudi Arabian metropolis. Haaren and Fthenakis [6] used the MCDM
method for selecting the wind farm site using spatial data and multiple criteria in New York.

This study uses three MCDM methods to compare different configurations of energy self-
consumption in the energy community based on different criteria such as economic, environmental,
technical, and social.

2 Problem definition

In this study, 16 different configurations for photovoltaic self-consumption in energy communities
were compared according to the considered criteria. The objective is to find the configuration that
gives better performance to the members of the energy community. This section presents these
different configurations and criteria.

2.1 Configurations of self-consumption in the energy communities

An energy community typically consists of multiple independent energy consumers, each trying
to maximize their own benefit. There are several configurations of energy self-consumption in
energy communities that contain industrial companies. In this study, 16 different configurations
divided into 5 categories were presented. The first category represents the case where each factory
has its own photovoltaic production. The second category is the case where all factories have a
shared photovoltaic production. The third category is a combination of categories 1 and 2. The
fourth category and the last category are respectively the same cases as the first category and the
third category, but with the addition of the energy exchange between the factories. For all these
categories, the option of adding individual and collective storage has been studied. In total, 16
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configurations were selected and modeled in order to find the one that gives the best results for
the economic, environmental, technological, and social criteria. Figure 1 represents the schema of
the configuration that includes individual and collective energy self-consumption, and individual
and collective storage. In this configuration, the total demand of each factory j is satisfied by the
energy sources available in the shared production, the factory j, and the grid at period t. In our
previous work [7], we described the modeling and data generation details of this configuration.
For example, we use the European Commission’s Photovoltaic Geographic Information System
(PVGIS) to calculate the energy produced by photovoltaic installations.

Fig. 1. Schema of global configuration for a case of three factories [7]

2.2 Criteria selection

This subsection aims to identify and classify the indicators used in this study to evaluate the
economic, environmental, technical, and social criteria of energy communities.

In the design of energy communities, the economic impact is the most important factor. Eco-
nomic goals are typically represented by a cost function that includes capital, operating, and
maintenance costs over the lifetime of the energy system. The economic criterion used in this re-
search is the one shown in equation 1. It enables the calculation of net present value in order to
assess the profitability of a project investment over a given time period. With R1 = R2 = ... = Rn

is the annual cash flow at year n, N is the project lifetime, r is the discount rate, and IC0 is the
initial investment cost.

NPV =
N∑

n=1

Rn

(1 + r)n
− IC0 (1)

The environmental criterion chosen in this study measures the CO2 emission reductions. It
utilizes the EIgrid (KgCO2/KWh) emission factor for energy from the grid (Egrid) and the EIRE

(KgCO2/KWh) emission factor for electricity produced by photovoltaic panels (ERE ). Equation
2 presents this criterion.

EI = EIgrid ∗ Egrid + EIRE ∗ ERE (2)

To evaluate the technical criteria, the self-sufficiency ratio is used. It determines the proportion
of an energy community’s demand (Dtotal,EC) which is satisfied by renewable production (ERE,EC).
This rate of energy self-sufficiency in an energy community is calculated using Equation 3.

SSR =
ERE,EC

Dtotal,EC
(3)

For the social criterion, the number of new job opportunities created by the realization of an
energy community was considered. This criterion may be a deciding element in REC investment
acceptance. Equation 4 represents this criterion.
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Jop =
new jobs

installed RE power
(4)

3 Methodology (MCDM methods)

To compare the 16 configurations of energy self-consumption in energy communities, three MCDM
method are used. The first method is Weighted Sum (WS), which is one of the simplest MCDM
methods and the best-known [8]. The idea of this method is to calculate the overall performance
of an alternative as a sum of the products of the normalized performance scores and the criteria
weights. The best alternative is that has the first score. The second method is Weighted product
(WP). It is similar to the WS, the main difference is that instead of addition in the main math-
ematical operation, there is now a multiplication. The third method is Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS), which is a practical and valuable technique
for ranking and selecting some possible alternatives by measuring Euclidean distances [5]. It is a
simple ranking method in its design and application.

4 Results and Conclusion

Each configuration was modeled and solved using 4 objectives : economic, environmental, technical,
and social in order to obtain the results necessary to apply the MCDM methods. For the weighting
of the criteria, 4 scenarios were used to study the correlation between the different criteria and to
see the impact of changing the weights on the final result. The first scenario is the equality be-
tween the four criteria. The second, third, and fourth scenarios give importance to the economic,
environmental, and social criteria, respectively. The 16 configurations of energy self-consumption
are ranked according to the three MCDM methods and the four weight scenarios. It can be con-
cluded that for all scenarios of the weights of the criteria and for three methods, the category that
combines individual and collective energy self-consumption gives the best results compared to the
other configurations.

This article compares 16 configurations of energy self-consumption in energy communities ac-
cording to economic, environmental, technical, and social criteria. The models of these configura-
tions were tested and compared with three MCDM methods. The results show that the category of
combining individual and collective energy self-consumption is the one that gives the best results
according to the different criteria.
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1 Introduction

The new regulations to protect the environment have made manufacturing companies aware of the
importance of adopting cleaner supply chain management practices. The apparel industry accounts
for 60% of the global textile industry. According to studies, it is responsible for nearly 10% of
greenhouse gas emissions worldwide [1]. To our knowledge, there is no article in the literature
that deals with a direct and reverse supply chain, addressing economic and environmental issues
together. The contributions of this paper are : (1) presentation of a more complete supply chain
integrating all the actors of the direct and reverse logistic, with resource saving and reuse of the
recycled materials. (2) The proposal of a new mixed integer linear programming model (MILP)
integrating economic and environmental performance indicators, and a carbon pricing mechanism.
(3) The design of a new benchmark for the textile and clothing industry based on several data
from the existing literature.

1.1 Literature review

In the literature, the most recent works address supply chain management problems with a stronger
focus on environmental aspects. [2], presented a direct supply chain based on a stochastic mixed
integer linear programming model for the manufacture, which is used to assess the effects of life
cycle carbon emissions on the supply chain. Although their work deals with the economic and
environmental performance of the supply chain, they do not include the aspect of reverse logistics,
which is an effective way to improve the uncontrolled consumption of virgin resources. In [3],
the authors have proposed a mixed integer mathematical model to improve resource reuse and
recovery in direct and reverse logistics. But in their conceptions of the forward and reverse supply
chain, they consider separately the costs generated by the production process and the recycling
process. Although they integrated aspects of forward and reverse logistics, their work is more
focused on improving economic performance with low environmental implications. [4] proposed a
mathematical model and a particle swarm optimization (PSO) algorithm for route planning in a
forward and reverse logistics network for a fresh produce transport company, minimizing the carbon
footprint. Their method is efficient on economic and environmental aspects, but does not take into
account all the actors in the supply chain, and does not take into account the carbon life cycle.
Thus, in the field of the textile and clothing industry, [1] proposes a mixed integer mathematical
model to evaluate the economic, social and environmental contribution of recycling on textile waste
management, but without integrating the reverse logistics aspect and carbon emissions.

Although all these works focus on better supply chain management, they do not sufficiently
integrate environmental and recycling aspects. Moreover, each paper deals separately with carbon
emissions, recycling and the coupling between direct and reverse logistics. However, the coupled
integration of all aspects has a strong impact on the decision-making process related to supply
chain management.

To this end, the integration of all levels and actors of the direct and reverse supply chain could
improve the economic and environmental performance of the whole chain.

Given the scarcity of work in the literature dealing completely with direct and reverse logistics,
and to our knowledge, there is no article that deals with a direct and reverse supply chain in
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textile and clothing industry, addressing economic and environmental issues together. Hence, the
importance of our current work, which has three objectives: (1) The presentation of a more complete
direct and reverse logistics structure integrating all actors. (2) The proposal of a new mathematical
optimization model integrating economic and environmental performance indicators, incorporating
carbon life cycle analysis and a carbon pricing mechanism. (3) The design of a new benchmark
for the textile and clothing industry based on several data from the existing literature for the
evaluation of the different methods proposed.

2 Problem statement and mathematical modelling

The addressed problem consider the following assumptions : (1) All demands are deterministic and
satisfied, (2) The variation of the carbon price is defined under several scenarios, (3) The capacity of
all suppliers, manufacturers, warehouses, etc. is limited, (4) The model will decide on the selection
of suppliers, subcontractors, the opening sites, warehouses, etc. (5) Model will also decide on the
amounts of raw materials to be ordered, based on the carbon footprint and the amount of recycled
second-hand raw materials. Figure 1 show the representation of considered supply chain.

2.1 Model formulation

To deal with this problem, a new mathematical model incorporating economic and environmental
performance indicators is presented. In this model, the objective function found the optimal solution
that minimizes the overall cost presented in expression (1).

Min Z = PC + TC +MC +RC +WC (1)

- PC : represent the procurement and CO2 emission cost for the production of raw materials.

- TC : represent the transportation and CO2 emission cost induced by the transport activity
during the supply.

-MC : represent the manufacturing, the opening and CO2 emissions cost during the production
process.

- RC : represent all costs generated by the processes of sorting, recycling and the costs of CO2

emitted in the recycling process.

- WC : is for the variable storage cost for each product in all the different warehouses.

Fig. 1. Direct and Reverse logistics
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2.2 Experimentation

The supply chain network for the experiment, consider 3 period (T=3) and includes 3 raw material
suppliers (S=3), 2 production sites (F=2), 2 warehouses (W=2), 3 customers (N=3), 1 collection,
sorting, and recycling center (L=1), 6 raw materials (R=6), 6 different products (P=6), 2 sub-
contractors (U=2) and 1 second-hand store (V=1). The demands of retailers are between 500 and
2000 per product units.

For solving the mathematical models, we used the Cplex 12.0 solver, with a Core i5 PC, fre-
quency 2.3 GHz.

Table 1. Percentage increase in overall cost VS reduction in carbon emissions

Scenarios Sc 0 Sc 1 Sc 2 Sc 3 Sc 4 Sc 6 Sc 7

Carbon prices(euro/tonCO2) 0 30 40 50 60 70 80

Overall cost(%) - +3.4 +6.8 +9.1 +12.5 +15.4 +17.81

Carbon Emission(%) - -23.6 -26.5 -29.7 -33.8 -35.2 -38.9

Table 1, present the impact of changes in the carbon price on the overall supply chain cost, in
percentage. In table 1, the carbon price have a highly correlated variation in supply chain costs for
each carbon price scenario (about 3.5% per variation).

The table shows a direct impact of carbon pricing on the reduction of carbon emissions for
each scenario on the supply chain (CarbonEmission(%)). This reduction can be justified by the
new choice of low-carbon, low-cost suppliers, subcontractors, and transportation modes. It is also
justified by the use of second-hand raw materials from recycling, which have a carbon life cycle
half as polluting as virgin material.

For example, for a change in Carbonprices between 0 and 30 euro/ton of CO2 emission, there
is a 23.6% decrease in emissions and a 3.4% increase in overall cost. Similarly, for a carbon price of
80, the overall cost increases by 3.6% compared to the carbon cost of 70; while for the same price
variation, there is a carbon reduction of 3.7%.

3 Conclusion and discussion

This article has addressed the problem of direct and reverse supply chain in the textile and cloth-
ing industry, considering both economic and environmental issues. Firstly, this work presented a
closed-loop reverse logistics structure. Secondly, a new mixed integer linear programming model
integrating economic and environmental performance indicators is developed. Finally, a new bench-
mark for the textile and apparel industry based on Figure 1 will be designed to analyze the model.

The aim of this study is to shows that taking into account the environmental aspects and
the recycling of textile waste in the direct and reverse supply chain, would strongly influence
the behavior of the actors of the supply chain. This will act at two levels: at the supply chain
configuration level. The second level concerns the economic impact, by reinjecting the recycled raw
material at the production sites in order to reduce the quantity of raw material to be ordered, and
the consumption of virgin materials and the environmental impacts.
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1 Introduction

Most of the software of modern computer systems come with many configurable parameters that
control the system’s behavior and its interaction with the underlying hardware. These parameters
are challenging to tune by solely relying on field insight and user expertise, due to huge spaces
and complex, non-linear system behavior. Besides, the optimal configuration often depends on the
current workload, and parameters must be changed at each environment variations. Consequently,
users often have to rely on the default parameters given by the provider, and do not take advantage
of the possible performance with a more appropriate parametrization of their tuned system. The
more complex these systems are, the more important the tuning becomes, as the components in-
teract with each other in ways that are hard to grasp by the human mind. As architecture becomes
more and more service oriented, the number of components per system increases exponentially,
along with the number of tunable parameters. This problem is particularly observed within HPC
systems with hundreds of devices assembled to build very complex and highly configurable super-
computers. As performance is the major concern in this field, each component must be finely tuned,
which is almost impossible to achieve solely through field expertise. An additional constraint is the
often noisy setting, because making resources exclusive is expensive and goes against the current
highly shared programmming environments. Automatic tuning methods thus must need to take
into account this possible interference on the tuned application, which degrades the performance
of classical auto-tuning heuristics. Faced with the inability of relying solely on users to take ade-
quate decisions for the parametrization of complex computer systems, new tuning methods have
emerged from various computer science communities to automate parameter selection depending
on the current workload. Because they do not require any human intervention, these approaches
are commonly called auto-tuning methods, a term which encompasses a broad range of methods
related to the optimization and machine learning field. Throughout the years, they have been
successfully applied to a wide range of systems, such as storage systems, database management
systems and compilers.

In this paper, we introduce a new Open Source software, called SHAMan (SmartHPCApplication
Manager), which provides an out-of-the-box Web application to perform black-box auto-tuning of
custom computer components running on a distributed system, for an application submitted by
the user. The framework integrates three state-of-the-art black-box optimization heuristics, as well
as resampling-based noise reduction strategies to deal with the interference of shared resources,
and pruning strategies to limit the time spent by the optimization process. It is to our knowledge
the only generalistic optimization framework specifically tailored to find the optimum parameters
of configurable HPC systems, by taking into account their specific constraints.

This paper is organized as follows. We introduce in section 2 the works related to ours, and dis-
cuss the improvements provided by SHAMan compared to the state-of-the-art. Section 3 introduces
the theoretical context of black-box optimization for noisy and expensive systems. In section 4 we
present the different features of SHAMan and its software architecture. In section 5, we present
the advantages of using SHAMan on three use-cases by tuning two different I/O accelerators and
OpenMPI collectives. Finally, section 6 concludes the paper and gives insights into planned further
works.

2 Related works and software

Within the HPC community, auto-tuning has gained a lot of attention for tuning particular HPC
application and improve their portability across architectures [13]. Seymour et al. [35] and Kni-
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jnenburg et al. [22] provide a comparison of several random-based heuristic searches (Simulated
annealing, genetic algorithms . . . ) that have provided some good results when used for code auto-
tuning. Menon et al. [25] use Bayesian Optimization and suggest the framework HiPerBOT to tune
application parameters as well as compiler runtime settings. HPC systems energy consumption can
also benefit from Bayesian Optimization, as Miyazaki et al. have shown in [27] that an auto-tuner
based on a combination of Gaussian Process regression and the Expected Improvement acquisition
function has raised their cluster to the Green500 list. The MPI community has also shown the
superiority of a hill-climbing black-box algorithm over an exhaustive sampling of the parametric
space in [19] and [41].

In terms of auto-tuning frameworks, several have been proposed recently in different domain
where optimization is required. The Machine Learning community has proposed several frame-
works to find the parameters that return the best prediction scores for a given model and dataset.
Among the most popular frameworks, we can cite Optuna [11], which relies on Tree Parzen Esti-
mators to perform the optimization. Autotune [23] is an other framework which supports several
black-box optimization techniques. Scikit-Optimize [8] which supports a wide range of surrogate
modeling techniques. The SHERPA [20] library provides different optimization algorithms with
the possibility to add new ones. It also comes with a back-end database and a small Web Interface
for experiment visualization. GPyOpt [12] is another library for users who wish to use Bayesian
Optimization. Finally, the framework TPOT [24] relies on genetic algorithms for the optimization
of Machine Learning pipelines. Within the MPI community, the two most famous commercical im-
plementations come with their own tuning tool: OPTO [14] is the standard tool used by the Open
MPI community for tuning MCA parameters, and similarly mpitune [5] from Intel MPI. These
methods only include exhaustive grid search, making these tools slow to use for tuning expensive
HPC applications. The main drawbacks identified with these already existing frameworks concern
the difficulty of integrating these libraries for purpose other than the ones they were designed
for by using them for HPC tuning. It is also difficult to enhance them with other optimization
techniques, such as noise reduction strategies. In addition, none of them offer a satisfying Web
Interface allowing an easy manipulation of the software.

Faced with the highlighted deficiencies of the existing solutions, we have developed our own
framework, and provide these main contributions and features:

(a) Versatility: it can handle a wide range of use-cases, and new components can be registered
through a generalist configuration file.

(b) Accessibility: the optimization engine is accessible through a Web Interface.
(c) Optimization diversity: as different heuristics work differently for different systems, our

framework provides several state-of-the-art heuristics.
(d) Easy extention: the optimization engine uses a plug-in architecture and the development of

the heuristic is thus the only development cost.
(e) Integration within the hpc ecosystem: the framework relies on the Slurm workload man-

ager [21] to run hpc applications. The microservice architecture enables it to have no concur-
rent interactions with the cluster and the application itself. It is not intrusive allowing users to
launch applications on their own. Also, no privileged rights are required to use the software.

(f) Customizable target measure: the optimized target function can be defined on a case-per-
case basis to allow the optimization of various metrics.

(g) Integration of noise reduction strategies: because of the highly dynamic nature and the
complexity of applications and software stacks, running in parallel on shared ressources are
subject to many interference, which results in a different performance measure for each run
even with the same system’s parametrization. Noise reduction strategies are included in the
framework to perform well even in the case of strong interference.

(h) Integration of pruning strategies: runs with unsuited parametrization are aborted, to
speed-up the convergence process.

3 Theoretical background

SHAMan relies on black-box optimization, which consists in treating the tuned system as a black-
box, deriving insight only from the relationship between the input and the output parameters, as
described by the optimization loop in figure 1.
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Fig. 1: Schematic representation of the optimiza-
tion loop, without

Fig. 2: Schematic representation of the optimiza-
tion loop, with noise reduction through resam-
pling

3.1 An overview of the optimization loop

Black-box optimization refers to the optimization of a function f with unknown properties in
a minimum of evaluations, without making any assumption on the function. The only available
information is the history of the black-box function, which consists in the previously evaluated
parameters and their corresponding objective value. Given a budget of n iterations, the problem
can be transcribed as:

Find{pi}1≤i≤n ∈ P s.t. | min(f(pi)1≤i≤n)−min(f) ≤ ϵ | (1)

– f the function to optimize
– P the parameter space
– ϵ a convergence criterion between the found and the estimated minimum

Every black-box optimization process starts with the selection of the initial parameters for the
algorithm. An acceptable initialization starting plan should respect two properties [18] [40]: the
space’s constraints and the non-collapsible property. The space constraints are shaped by the
possible values that can be taken by the parameters. The non-collapsible property specifies that
no parametrization can have the same value on any dimension. A design plan respecting this
constraint is called a Latin Hypercube Design (LHD)[18]. The next step consists in a feedback
loop, which iteratively selects a parametrization, evaluates the black-box function at this point
and selects accordingly the next data point to evaluate. The higher procedure for searching an
optimal solution in a parametric space is called an optimization heuristic. There are many black-
box heuristics, and we have implemented the following set in our optimization engine because of
their simplicity of implementation and their proven efficiency for HPC systems’ tuning. A detailed
motivation and description of our implementation can be found in [30] and [31].

– Surrogate models: Surrogate modeling consists in using a regression or interpolation tech-
nique over the currently known surface to build a computationally cheap approximation of the
black-box function and to then select the most promising data point in terms of performance
on this surrogate function by using an acquisition function.

– Simulated annealing: the simulated annealing heuristic is a hill-climbing algorithm which
can probabilistically accept a solution worse than the current one.

– Genetic algorithms: Genetic algorithms consist in selecting a subset of parameters, among
the already tested parametrizations, considering the objective value of each parametrization,
and then combining them to create a new parametrization.

3.2 Stop criteria

When running the optimization algorithm, the easiest stop criterion is based either on a budget
of possible steps (exhaustion based) or on a time-out based on the maximum elapsed time for the
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algorithm. Once the iteration budget has been spent, the algorithm stops and returns the best
found parametrization. However, while very simple to implement, this criterion can be inefficient,
as it has no adaptive quality on the tuned system. Using other stop criterion to speed-up the
convergence process, while still providing a good solution is thus essential for tuning expensive
systems, and SHAMan integrates two different stop criteria:

Exhaustion based criteria Exhaustion based criteria are criteria based on the number of allowed
iterations performed by the heuristic. Once all of the possible iterations have been tried by the
algorithm, the algorithm stops and the parametrization which returned the best corresponding per-
formance measure is kept. They are the most popular in the black-box optimization literature [44]
because of their simplicity of implementation and the control they give over the optimization
process. However, they can be a waste of resource because they can either:

– Stop the algorithm while the maximum optimization potential has not been reached, thus not
finding the optimal parametrization. The algorithm either has to be started from scratch or
can resume, depending on the practical auto-tuning implementation.

– Keep the algorithm running even though the maximum potential of optimization has already
been reached. This is a waste of time and resources, as the algorithm runs aimlessly without
providing any improvement.

Exhaustion-based criteria thus do not provide much flexibility in the optimization process
and do not have any adaptive qualities to the behavior of the system. Because of this, SHAMan
integrates two other criteria based either on the value of the performance function or the value of
the tested parameters:

Improvement based criteria They consist in stopping the optimization process if it does not bring
any improvement over a given number of iterations. Depending on the target behavior, the im-
provement can either be measured globally as the average of the evaluated values or locally as the
change in optimum values.

– Best improvement: Improvement of the best objective function value is below a threshold t
for a number of iterations g.

– Average improvement: Improvement of the average objective function value is below a
threshold t for a number of iterations g.

– Median improvement: Improvement of the median objective function value is below a thresh-
old t for a number of iterations g.

Movement based criteria Movement based criteria consider the movement of the parametric grid
as a criteria to stop the optimization. Two variations of the criteria are available in our framework:

– Count based: The optimization algorithm is stopped once there is less than t different
parametrization evaluated over a number of iterations g.

– Distance based: The optimization algorithm is stopped once the distance between each
parametrization goes below a certain threshold t for a number of iterations g.

3.3 Resampling for noisy systems

Resampling consists in adding a “resampling filter” by using a set logical rule to select which
parametrization to reevaluate. A detailed schematic representation of the integration of resampling
within the black-box optimization tuning loop is available in figure 2. The general goal of resampling
is to reduce the standard deviation of the mean of an objective value in order to augment the
knowledge of the impact of the parameter on the performance.

Algorithmically, we define a resampling filter as a function RF which takes as input an opti-
mization’s trajectory already evaluated fitness and corresponding parameters (θi ∈ Θ,F (θi) ∈ R)k,
for the optimization trajectory at step k, and outputs a boolean on whether or not the last
parametrization should be re-evaluated. This filter can be integrated for both initialization draws
and exploitation draws, or only for exploitation ones. We make the latter choice, as we want to
keep the initialization draw to test as many parametrization as possible, and if needed, let the
algorithm come back to these parametrization for further investigation. Resampling is a trade-off
between having a better knowledge of the space and waste some computing times on re-evaluation.
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We present here two of the most popular resampling algorithms in order to efficiently reevaluate a
parametrization and a more exhaustive description is proposed in [36]. Three noise strategies are
available in the framework:

– Static resampling: re-evaluates each parametrization for a fixed number of iterations.
– Standard Error Dynamic Resampling [17]: re-evaluates the current parametrization until

the standard error of the mean falls below a set threshold.
– An improved noise reduction algorithm: a complex decision algorithm for re-evaluating

the current parametrization [31].

3.4 Pruning of expensive systems

Pruning strategies consist in stopping some runs early because their parametrization is unpromis-
ing, compared to already tested parameters. Two pruning strategies are available in the framework:

– Default based: It consists in stopping every run that takes longer than the execution time
corresponding to the default parametrization.

– Estimator based: It consists in stopping every run that takes longer than the value of an
estimator computed on previous runs. For example, if the selected estimator is the median,
the current run is stopped if its elapsed time takes longer than 50% of the already tested
parametrization. This pruning only applies to runs performed after the initialization ones.

4 Software architecture and features

SHAMan (Smart HPC Applications Manager) performs the auto-tuning loop by parametrizing the
component, submitting the job through the Slurm workload manager, and getting the correspond-
ing execution time Using the combination of the history (parametrization and execution time) to
select the next most appropriate parametrization until the stop criterion is reached.

4.1 Terminology

Throughout this section, we will use the following terms:

– Component: the configurable component which optimum parameters must be found.
– Target value: the measurement that needs to be optimized.
– Parametric grid: the possible parametrization defined as (minimum, maximum, step value).
– Application: a program that can be run on the clusters’ nodes through Slurm to be tuned.
– Budget: the maximum number of evaluations to find the optimum value.
– Experiment: A combination of a component, a target value, an application and a parametrized

black-box optimization algorithm that will output the best parametrization for the application
and the component.

4.2 Optimization and vizualization procedure

The main features of SHAMan are the possibility to:

Declare a new configurable component and register it for later optimization Running the command
shaman-install with a YAML file describing a component registers it to the application and makes
it possible to be optimized. This file must describe how the component is launched and declares its
different parameters and how they must be used to parametrize it. After the installation process,
the components are available for optimization in the launch menu.

Design and launch an experiment through a Web interface or through a command line interface
The main way is to launch the experiment through the Web interface via the menu. The user has
to configure the black-box by:

1. Writing an application according to Slurm sbatch format.
2. Selecting the component and the parametric grid through the radio buttons.
3. Configuring the optimization heuristic, chosen freely among available ones. Resampling parametriza-

tion, stop criterion and pruning strategies can also be activated.
4. Selecting a maximum number of iterations and the name of the experiment.

The optimization process will begin to run and its information will be available in the exploring
section of the Web application.
Another way to use SHAMan is to use it directly through a command line interface. It allows more
flexibility of the different features and requires the same information as the Web interface.
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Visualize data and results of finished or running experiments After the submission, the evolution
of the running experiments can be visualized in real-time. The optimization trajectory is available
through a display of the different tested parameters and the corresponding execution time, as well
as the improvement brought by the best parametrization. The other metadata of the experiment
are also available through side menus. Figure 3 and 4 show the tunes performance without any
aggregation, then with it if the noise reduction is enabled.

Fig. 3: Visualization of an optimization trajec-
tory

Fig. 4: Visualization of an optimization trajec-
tory when noise reduction is enabled

4.3 Software architecture

The architecture of SHAMan relies on microservices, as can be seen in figure 5 and detailed in [32].
It is composed of several services, which can each be deployed independently:

– An optimization engine which performs the optimization tasks.
– A front-end Web application
– A back-end storage database
– A rest api enabling communications of all the services

Fig. 5: General architecture of the tuning framework

4.4 Implementation choices

SHAMan uses Nuxt.js as a frontend framework. The optimization engine is written in Python.
The database relies on the NoSQL database management system MongoDB. The message broker
system uses Redis [16] as a queuing system, manipulated with the ARQ Python library [1]. The
API is developed in Python, using the FastAPI framework. The framework is fully tested, can
be fully deployed as a stack of Docker containers [26]. The code is available on Github [9] and
thoroughly documented [3].

5 Use-cases and results

In some of our previous works, we have shown the efficiency of SHAMan on two different use-
cases belonging to I/O accelerators: a smart prefetching strategy and a burst buffer [33] [34]. To
further prove the versatility of SHAMan, we tackle another difficult to tune HPC component: MPI
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collectives. We begin this section by summarizing the main results of our previous experiments,
and then introduce the new results provided by our experiment on MPI collectives.

5.1 I/O accelerators

I/O accelerators are software or hardware components which aim is to reduce the increasing per-
formance gap between compute nodes and storage nodes, which can slow down I/O intensive ap-
plications. Indeed, on large supercomputers, the many compute nodes performing reads or writes
can stress the storage bay and make the application wait while it performs its I/O, generating I/O
bottlenecks. This is especially true for HPC applications that periodically save their current state
(by performing checkpoints) which causes many writes during a short timeframe. The link between
the compute and the storage node can become saturated, which slows down the application. To
mitigate these problems, several I/O accelerators have been developed over the years, and we fo-
cused specifically with SHAMan on tuning two commercial implementations of I/O accelerators:
a pure software one called smart read optimizer [10] and a mix of software and hardware one
called smart burst buffer [2]. Because these I/O accelerators come with many parameters, they are
difficult to tune, and operate very differently which make them good use-cases to demonstrate the
versatility of SHAMan and black-box optimization.

Fig. 6: Best values for DistOptim, AvgDist and the sum of both for every heuristic

For both I/O accelerators, we performed a comparative study of the impact of each black-box
optimization heuristic with SHAMan and showed that surrogate models offer the best trade-off
between optimization quality and stability of the trajectory, and outperforms by far a random
sampler.

As displayed in figure 6, we show that with a distance to the true minimum inferior to 4%
for every application, our auto-tuner exhibits good convergence properties. As we have found
convergence rate inferior to 40 steps for reaching 5% of the optimal value, we have also demonstrated
that the auto-tuner can operate in a sparse production environment for expensive systems.

5.2 Tuning MPI collectives

MPI is a standardized and portable message-passing standard designed to function on parallel
computing architectures through many implementations as Open MPI [6] and MPICH [4]. Its
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collective operations provide a standardized interface for performing data movements within groups
of processes and come with several tunable parameters. The optimal configuration greatly depends
on the size of the transmitted message [29], as well as the architecture and the topology of the
target platform [43], and the default parametrization is not adapted for a wide range of cases. In
particular, the Open MPI [6] implementation features a modular architecture and the selection
of modules along with their parametrization is achieved through MCA parameters, which can be
provided using either configuration files, command-line arguments or environment variables. This
implementation is the one we will be focusing on, by considering the subset of parameters related
to the coll_tuned component that allow to dynamically set: (1) the algorithm; (2) fan-in/fan-
out; (3) the segment size. The main reason for choosing these parameters is that they have been
confirmed as having the most impact in several previous studies [38].

The importance of tuning MPI collectives The importance of this tuning challenge is well
known across the MPI community and several studies confirm and further develop the results of our
own study: the optimal collective parametrization depends on many factors, such as the physical
topology of the system, the number of processes involved, the sizes of the message, as well as the
location of the root node [29][39]. An especially thorough analysis of the performance gap between
the default parametrization and the optimum parametrization found by exhaustive search for the
MPICH implementation is available in [42], and the importance of choosing the right algorithm
to perform the collective operations is emphasized in [28]. Using parametrization adapted to the
message size and the collective is thus necessary to maximize system’s performance. The easiest
solution for tuning is to rely on brute force, i.e. testing every single possible parametrization and
running the benchmark with this parametrization, but this can cause the tuning process to go up
to several days in time. Brute force is thus impractical on a production system, as it requires too
many computing resources and user time.
All these reasons show the relevance of using black-box optimization through SHAMan: finding the
optimal configuration of MPI collective is crucial for the performance of the system as the default
parametrization is unsuitable for many communication problems, but exhaustive search is a very
impractical way of finding it.

Experiment plan For the purpose of demonstrating the efficiency of SHAMan in the case of
MPI tuning, we have selected a subset of 4 blocking collectives to tune amongst the most used
ones in HPC applications [38] [15], and to cover all communication patterns (one-to-all, all-to-one,
all-to-all): (1) Broadcast, (2) Gather, (3) Reduce and (4) Allreduce.

The tuning is performed using the OSU MPI microbenchmark suite [7], which provides tests
for every collective operation. For each of the tuned collective and each tested size, we use the
corresponding benchmark in the suite. To ensure stability and reduce the noise when collecting
execution times, the OSU benchmark was parameterized to perform 200 warmup runs before per-
forming the actual test. The tuned message size range from 4KB to 1MB, with a multiplicative
step of 2. Two hardware configurations are selected using the 12 nodes of a cluster, to emulate two
of the most common types of process placements encountered in HPC applications: (1) One MPI
process per node, for a total of 12 MPI processes, as is typical of hybrid applications relying
on MPI for inter-node communications and on OpenMP for their implicit, intra-node communica-
tions ; (2) One MPI process per core, for a total of 576 MPI processes, 48 MPI processes per
node, which is typical of pure, MPI-only applications which rely on the MPI library for all their
communications (inter-node and intra-node alike). This results in a total of 160 SHAMan opti-
mization experiments (4 collectives, 20 sizes and 2 different topologies). The performance metric
for tuning is the time elapsed by the benchmark for the selected size of operation, as output by
the OSU benchmark.

To provide a thorough analysis of the advantage of black-box optimization compared to ex-
haustive search, the reference execution time is first computed using the default parametrization
which is run 100 times to account for possible noise in the collected execution time. An exhaustive
sampling of the parametric space is then performed to select the parametrization with the minimal
execution time as the optimal one, which acts as the ground truth. This ground truth is also run
100 times for noise mitigation.

SHAMan parametrization The tuning is then performed with SHAMan, using Bayesian Opti-
mization specifically configured for MPI. The initialization plan is composed of 10 parametrization.
The selected maximum number of iterations is set to 150 and the stop criterion is improvement
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based: we choose to stop the optimization process if the best execution time over the last 15 iter-
ations is less than 1% better than the currently found minimum. The best parametrization found
by the optimization process is considered to be the best parametrization found by SHAMan and
is also run one hundred times to account for noise.

Main performance gains

Improvement compared to default The first important result is the gain brought by using the auto-
tuner rather than the default parametrization, which is represented in figure 7. Over all experi-
ments, we find an average improvement of 48.4% (52.8% in median), using the best parametrization
found with Bayesian Optimization. We find an average improvement of 38.42% (29% in median)
for experiments with one mpi process per node and of 58.9% (65.3% in median) when using one
mpi process per core, highlighting the efficiency of tuning the Open MPI parametrization instead
of simply relying on the default parametrization.

Fig. 7: Performance gain with Bayesian Optimization compared to the default parametrization

The time gain brought by SHAMan varies depending on the tuned collective, as the default
parametrization is more adapted than others for some collectives. It is the case for the allreduce
collective when running one MPI process per node, where the optimum parametrization provides a
median improvement of 0.9% (1.8% on average). Other collectives have a default parametrization
that is not adapted at all. It is for example the case of the gather collective with one MPI process per
core, where we see an improvement of 91% in median and on average. The improvement compared
to the default parametrization is strongly dependent on each evaluated parameter: message size,
number of processes per node or collectives and is difficult to predict. This highlights the importance
of tuning each configuration to get the best performance, and the need for an auto-tuning method
that can be used on every architecture.

Tuning quality compared to exhaustive sampling The median difference in elapsed time, along with
the noise measurement, between the best parametrization found by SHAMan and the optimal
parametrization found by exhaustive search is represented in table 1. Over all optimization experi-
ments, the average distance between the optimum and the result returned by Bayesian Optimization
is of 5.71 microseconds (0.04 in median) for an average noise of respectively 2.03 microseconds in
mean and 0.05 microseconds in median. This means that in median, the difference between using
the best parametrization of our tuner compared to the true best parametrization is imperceptible
from the noise. When looking at the relative difference between the optimum and the results from
Bayesian Optimization, we find an average distance of 6% (0.7% in median) between the two.

When looking at the different collectives and topologies, we find the difference between the
two optimal parametrizations to be inferior to the measured noise for all collectives except for
allreduce with 576 MPI processes. When looking at each optimization problem separately, we find
that for 105 optimization problems out of 160, the distance of the performance returned by Bayesian
Optimization to the optimum is below the measured noise of the system. For the problems where
the difference between the results returned by the tuner and the optimum cannot be explained by
noise, we find a quite low average difference of 1.90 microseconds (0.18 in median).
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Table 1: Median difference in elapsed time and noise between best parametrization found by Bayesian
Optimization and optimal parametrization

Collective # of MPI processes Relative difference (%) ∆T (µs) Noise (µs)

Allreduce 12 0.51 0.43 0.04
576 15.28 1.05 3.81

Broadcast 12 4.79 0.32 0.26
576 2.35 0.32 0.18

Gather 12 0.74 0.04 0.01
576 0.00 0.02 0.00

Reduce 12 0.00 0.06 0.00
576 0.00 0.03 0.00

The noise difference between collectives is explained by multiple factors. Gather and reduce show
low noise due to their simple communication pattern (all-to-one). On the opposite, the allreduce
collective involves much more intertwined messages, which explains its higher noise and noise
sensitivity. Broadcast’s higher noise is explained by the best performing algorithm found (k-nomial
tree) which, according to Subramoni et al. in [37], introduces some noise due the imbalanced
communication pattern.

Tuning speed compared to exhaustive sampling The elapsed time required to reach the optimum for
the two tuning solutions and for each of the collectives and configurations is reported in table 2.

Table 2: Time to solution for each heuristic and each collective
Collective # of MPI processes Exhaustive search (minutes) SHAMan (minutes) Gain (%)

Allreduce 12 52.07 4.48 91.40
576 452.55 46.77 89.66

Bcast 12 744.10 23.65 96.82
576 5097.53 133.25 97.39

Gather 12 23.45 3.42 85.42
576 1040.07 77.41 92.56

Reduce 12 87.50 5.24 94.01
576 550.80 61.58 88.82

With a time gain of more than 85% for each collective, we see the benefit of using guided search
heuristics with SHAMan to explore the parametric space instead of testing every parametrization
with exhaustive sampling. The time required to run all the 160 optimization experiments ranges
from a total of 8048 minutes (approximately 134 hours) using brute force to 355 minutes (approx-
imately 6 hours) using Bayesian Optimization, resulting in a total speed-up of 95%. The speed-up
is relatively uniform across each collective and each topology.

Overall experiments, we demonstrate that using Bayesian Optimization, we reach 94% of the
average potential improvement, for a speed-up in tuning time of 95% on the overall tuning phase.
Compared to default Open MPI parametrization, this leads to an average improvement of 48.4%
in collective operation performance. This confirms the accuracy of our solution for optimization
and makes it a satisfactory alternative to exhaustive search, especially when considering the strong
improvement it brings when compared to the default parametrization. This study thus confirms the
versatility of SHAMan and black-box optimization for the tuning of a wide range of parametrizable
components, and shows that the scope of our work can be extended to many of tunable components
within the HPC ecosystem.

6 Conclusion

In this paper, we suggest an OpenSource auto-tuning framework, called SHAMan (Smart HPC
Application Manager) for tuning noisy and expensive systems, which addresses some of the gaps
in the tuning frameworks already present in the literature. While some of our previous works
already showed the strong performance of SHAMan on I/O accelerators, we added another use-
case to further prove its universality, by tuning MPI collectives. When performing the optimization
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of four MPI collective communication operations, on two different hardware topologies and for
20 different message sizes, we demonstrate that using Bayesian Optimization, we reach 94% of
the average potential improvement, for a speed-up in tuning time of 95% on the overall tuning
phase. Compared to default Open MPI parametrization, this leads to an average improvement of
48.4% in collective operation performance. In the near future, we intend to consider additional
parameters than the topology and the message size to refine our optimization. Also, we identified
additional systems to tune beyond these three cases, such as the MSR parameters of the SAP
HANA database which will further extend SHAMan’s scope. Regarding the improvement of the
optimization methods, we plan on investigating the behavior of the tuner when using pruning
strategies. Indeed, these pruning strategies cut off some runs and prevent us from measuring the
true performance corresponding to this parametrization. We intend to apply survival analysis to
deal with this ”censored” data in order to speed up even more SHAMan’s convergence speed.

-–
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Abstract. The ever-increasing complexity of both Deep Neural Networks (DNN) and hard-
ware accelerators has made the co-optimization of these domains extremely complex. Pre-
vious works typically focus on optimizing DNNs given a fixed hardware configuration or
optimizing a specific hardware architecture given a fixed DNN model. Recently, the impor-
tance of the joint exploration of the two spaces draw more and more attention. Our work
targets the co-optimization of DNN and hardware configurations on edge GPU accelerator.
We investigate the importance of the joint exploration of DNN and edge GPU configura-
tions. We propose an evolutionary-based co-optimization strategy for DNN by considering
three metrics: DNN accuracy, execution latency, and power consumption. By combining the
two search spaces, we have observed that we can explore more solutions and obtain a better
tradeoff between DNN accuracy and hardware efficiency. Experimental results show that the
co-optimization outperforms the optimization of DNN for fixed hardware configuration with
up to 53% hardware efficiency gains for the same accuracy and latency.

1 Introduction and related works

Deep Neural Networks (DNN) and hardware accelerators are both leading forces for the observed
progress in Machine Learning (ML). However, DNNs are becoming more and more complex and
resource-demanding. Therefore, they need careful optimization to achieve the best tradeoff between
accuracy and hardware efficiency. To meet this challenge, Hardware-aware Neural Architecture
Search (HW-NAS) has been proposed [1] in which DNN hardware efficiency is considered during
the exploration process. Nevertheless, hardware efficiency depends not only on the DNN archi-
tecture but also on the hardware configuration [2–4]. Most existing works on HW-NAS fall into
the optimization of DNN without considering the reconfigurability of the hardware accelerator. As
discussed in [5], this approach is sub-optimal because the HW-NAS search space is narrower when
considering only a fixed hardware configuration. Thus, by considering the hardware design space,
it is possible to find tailor-made DNNs for each hardware configuration and vice-versa. The joint
exploration of both search spaces is referred to as the co-optimization in this paper.

Recent works [2, 6–13] have tackled the co-optimization problem where DNN architectures are
optimized jointly with hardware configurations. Thereby, DNN-HW pairs are generated during
the exploration process. However, as pointed out by [14], this strategy incurs a huge search time
given the complexity of the joint search space. Therefore, another co-exploration strategy has been
proposed by [15–17], in which separate optimization algorithms optimize DNN and hardware.
The results can be then communicated between the two optimization algorithms to adjust the
exploration process at some points. However, although this strategy solves the drawback of the first
joint approach, the sub-optimality of the final results remains its critical issue. The works mentioned
above can also be classified according to the following factors [5]: DNN search space and targeted
hardware accelerator, exploration algorithm, objective functions, and fitness evaluation strategy.
Nevertheless, only a few works have attempted to consider the co-optimization problem for GPU-
based hardware platforms. Recent edge GPUs allow the reconfigurability of different hardware
parameters such as processing units and operating frequencies. The impact of these parameters on
DNN performance has been well discussed and analyzed in [18, 19]. Moreover, recent works shed
light on the impact of these parameters when varying other parameters of the DNN. For instance,
the authors in [3] adjust both the configuration of the GPU operating frequencies and the batch
size of the DNN to maximize the inference hardware efficiency.

Our paper is structured as follows. In section 2 we present and explain the motivation of
our work. In section 3 we first formulate our multi-objective co-optimization problem. Then, we
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describe and explain our optimization approach. Section 4, presents our experimental setup and
results. Then we discuss our obtained results and compare them to other approaches and state-of-
the-art solutions. Finally, the conclusion will be given in section 5.
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Fig. 1: The results of performing an HW-NAS under
fixed edge GPU’s hardware configuration.
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Fig. 2: The results of optimizing edge GPU’s hardware
configuration for a fixed DNN model.

2 Motivation

Figure 1 shows that different DNN models give different tradeoffs between accuracy and hardware
efficiency (i.e., latency and power consumption) under a fixed hardware configuration. This figure
gives the results of a Hardware-aware Neural Architectural Search (HW-NAS) [20] that we have
performed under a fixed hardware configuration. As hardware platform, we used the NVIDIA
Jetson AGX edge GPU. Each point represents a DNN model in the search space. The x-axis and
y-axis represent the measured latency and power consumption, respectively, on the edge GPU.
The color of the points indicates the TOP-1 accuracy of the DNN. Figure 1 shows that different
tradeoffs are obtained between accuracy and hardware efficiency for each explored DNN model.

Figure 2 illustrates that the hardware efficiency of a single DNN varies when varying the
hardware configuration. This figure gives the results of an exhaustive exploration of hardware con-
figurations for a fixed DNN model, EfficientNet-B0 [21] in this case. To showcase the impact of
the hardware configuration on the overall hardware efficiency of the DNN, we compare the ob-
tained results with the predefined default hardware configurations proposed by NVIDIA. In this
figure MAXN (resp. MINN) is the NVIDIA Jetson AGX configuration with the highest (resp. the
smallest) allowed clock frequency. MAXN (resp. MINN) in general maximizes (resp. minimises)
the processing speed at the cost of a high (resp. low) power consumption. The other configurations
(i.e., from conf 1 to conf 5) are proposed to achieve a tradeoff between MAXN and MINN [22].
Remarkably, from the optimal Pareto front (marked in blue), the exhaustive exploration identifies
hardware configurations that completely dominate all NVIDIA’s predefined default configurations.
It’s important to mention that the Pareto front does not contain any configuration of the NVIDIA’s
predefined configurations. Furthermore, the dominant solutions in the Pareto front improve upon
the default configurations of NVIDIA (i.e., MAXN and MINN) by 57% and 40% for power con-
sumption and latency, respectively This result shows the necessity to explore the space of hardware
configurations, to enhance the hardware efficiency of the DNN.

From these two figures we can conclude that, the performances of a DNN model are determined
by the DNN architecture and the HW configuration. However, understanding the impact of these
factors is not straightforward. For instance, the DNN with the highest computational complexity
is not necessarily the most accurate model in the DNN search space [23]. In addition, the correla-
tion between the performance metrics is also complex. For instance, minimizing latency incurs a
maximization of power consumption and vice versa [24].
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3 Proposed Approach

3.1 Problem formulation

Our DNN-HW co-optimization problem can be formulated as a multi-objective problem. As ex-
ploring the whole HW space and the whole DNN space is time-consuming and costly in terms of
development efforts, we need a tool for a rapid DNN/HW co-design space exploration. Further-
more, while accelerating the co-design space exploration, the tool must adequately provide good
approximation of the Pareto front. In this paper, we focus on solutions depicting the highest DNN
accuracy and hardware efficiency. The term hardware efficiency refers to the trade-off between
latency and power consumption. The mathematical formulation of our problem is as follows:

MOP :

{
minF (dnn, hc) = [(Errordataset(dnn), LatencyHWACC

(dnn, hc), PowerHWACC
(dnn, hc)]T

s.t. (dnn, hc) ∈ (DNN ×HWConf)

(1)
Where dnn represents a DNN model defined by the DNN decision variables detailed in table 1. hc
represents a hardware configuration defined by the hardware decision variables listed in table 1.
DNN and HWConf are the decision spaces of DNNs and hardware configurations, respectively,
detailed in table 1. Finally, F is the objective vector to optimize by minimizing the DNN error
(i.e., maximizing accuracy) on dataset, DNN latency and power consumption on the hardware
accelerator HWACC . We note that the Error is measured by calculating the TOP-1 error rate,
which is the percentage of images from dataset for which the correct label is not the class label
predicted by the DNN. Latency is the execution time (in milliseconds) of dnn on the hardware
accelerator HWACC . Finally, Power is the average power consumption (in milliwatt) observed
when executing dnn on the hardware accelerator HWACC .

3.2 Optimization Methodology
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Fig. 3: Overview on the proposed co-optimization approach based on NSGA-II

To solve the above problem, we propose an evolutionary-based co-optimization strategy, where
we search for both the optimal DNN architecture and hardware configuration. The search is done
by exploring DNN and HW search spaces. Figure 3 details the proposed co-optimization approach.
Our methodology includes three main components:

– Joint search space: We extend the search space of the HW-NAS by including the hardware
configurations. Furthermore, by definition, the joint search space can be generalized to any
DNN, task, dataset, and hardware accelerator. Thus, these four factors are considered as inputs
in our co-optimization framework. In this paper, we use the joint search space detailed in table
1. We note that all the considered decision variables are discrete.
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– Optimization algorithm: We choose NSGA-II [25] as an evolutionary algorithm to explore
the joint search space. NSGA-II is a widely used algorithm for NAS problems in general, and
HW-NAS in particular [26]. Moreover, it typically provides a fast and efficient convergence
by searching a wide range of solutions. These two abilities is due to its selection strategy
based on non-dominated sorting and crowding distance, which allow for both convergence and
diversity of solutions. In this paper, the parameters used for NSGA-II are detailed in table 2.
We first initialize the population using the LHS method (Latin HyperCube Sampling). Then,
next populations are generated from: 1) selecting the best solutions using the non-dominated
sorting algorithm of NSGA-II and 2) applying mutation and crossover on these best solutions to
create the offspring population. We choose a high crossover probability of 80% to increase the
reproducibility of good candidate solutions. However, we decrease the probability of mutation
to 30% to prevent the risk of losing traces of good candidate solutions. Crossover and mutation
are chosen uniformly.

– Evaluation strategy: The explored pairs are evaluated regarding the DNN accuracy and
hardware efficiency. DNN accuracy is evaluated in two stages: 1) We use a fast evaluation
technique to quickly determine the DNN accuracy during the exploration, then after the ex-
ploration, 2) we perform a more complete evaluation of the DNN accuracy for the elite solutions.
We note that the results of the two evaluation techniques are highly correlated. Furthermore,
DNN hardware efficiency is directly measured by executing the DNN on the hardware acceler-
ator under the specified configuration.

4 Evaluation

Table 1: The joint search space of DNN and hardware parameters

Decision
variables

DNN search space Hardware search space
Input

resolution
Width Depth

Kernel
size

Expand
ratio

CPU
frequency

GPU
frequency

Memory
frequency

Values [192, 288] [16, 1984] [1, 8] [3, 5] [1, 6] [0.1, 2.3] [0.1, 1.4] [0.2, 2.1]
Cardinality 4 16 8 2 4 29 14 9

Table 2: NSGA-II parameters

Parameter Value
Number of generations 50
Population size 100
Population initialization LHS
Mutation, probability Uniform, 30%
Crossover, probability Uniform, 80%

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Output

d1 .. d7 w1 .. w7

k1 .. k7 e1 .. e7

Depth Width

Kernel size Expansion ratio

DNN Architecture Hyperparameters DNN Architecture Encoding

DNN encoding

Layer 1

Layer d4

Kernel size (k4) 
Output filters (w4) 
Expansion ratio (e4)

Conv 1x1

Depth-wise Conv

Conv 1x1

Squeeze & Excitation

Kernel size (k4) 
Output filters (w4) 
Expansion ratio (e4)

Conv 1x1

Depth-wise Conv

Conv 1x1

Squeeze & Excitation

res

Input  
resolution

res Depth Width Kernel size Expansion
ratio

DNN Blocks encoding

Fig. 4: DNN search space encoding: A candidate DNN architecture is real-encoded using a single vector that comprises
five sub-vectors depicting: input resolution, depth, width, kernel size, and expansion ratio of each block

4.1 Experimental Setup

With the essential concepts described above, our co-optimization problem instance has the following
inputs:

– DNN search space: We use the same search space provided by [20, 27]. The search space contains
1011 DNN architectures, as detailed in table 1 and figure 4. The authors in [20] provide a
prediction model for accuracy assessment, as a fast evaluation tool, and a pretrained supernet,
as a complete evaluation tool. However, the second strategy is time-consuming as the sampled
DNN needs to be calibrated on the entire training dataset (ImageNet). Thus, we used a fast
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evaluation strategy during the exploration then performed a complete evaluation using the
pretrained supernet for the elite solutions.

– Dataset: We choose to explore the joint search space for a state-of-art dataset such as ImageNet.
Thus, the DNN accuracy are calculated on the ImageNet [28] validation dataset. All images
are preprocessed using data augmentation techniques such as whitening, upsampling, random
cropping, and random horizontal flipping, before feeding them to the DNN.

– Hardware search space: We choose the NVIDIA Jetson AGX Xavier GPU as as a hardware
accelerator[29]. NVIDIA Jetson GPU accelerators allow the reconfigurability of different hard-
ware parameters such as the number of operating cores. It also allows to have different operating
clock frequency in the cores, GPU, and memory units. The chosen values of these parameters
depend on the application requirements. For our case, we only vary the operating frequencies
as detailed in table 1
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Fig. 5: Co-exploration results on the joint search space
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Fig. 6: Results of the three exploration approaches
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Fig. 9: Hypervolume results of the
three optimization approaches

4.2 Experimental Results

In this section we will discuss the obtained results from two main perspectives:

– Efficiency of the co-exploration: To underline the co-exploration’s importance, we compare
the results obtained when co-exploring the joint search space and when performing a typical
HW-NAS under fixed hardware configurations. We choose two default configurations proposed
by the hardware manufacturer, NVIDIA in our case: MAXN and MINN. Figure 5 gives the
results of the co-exploration, where figure 6 depicts a comparison between the results of the
three approaches (i.e., joint, MAXN, and MINN), marked with different points shapes. After
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analyzing the two figures, we can clearly see that the region explored in the joint space is
much larger than the regions explored when fixing the hardware configuration to MAXN or
MINN. Furthermore, the explored regions when fixing the hardware configuration are included
in the co-exploration. Indeed, the joint search space allows for exploring much larger solutions
and hence different tradeoffs between DNN accuracy and hardware efficiency. The obtained
hypervolume results presented in table 2 confirm this observation. The obtained hypervolume
from the co-exploration is larger than the hypervolumes of the HW-NAS under MAXN and
MINN. Furthermore, we give figures 7 and 8 to show the diversity of the explored solutions.
The white points correspond to all the explored solutions, whereas the solutions of the Pareto
set are marked in blue. In figure 8, we show the explored hardware decision space. From this
figure, we can observe that the Pareto optimal solutions are diverse and well distributed. This
confirms our earlier observation that no a priori knowledge can be used to choose the best-
suited hardware configuration without actual exploration and evaluation. Figure 7 gives the
characteristics of the explored DNN models in terms of input resolution, depth (i.e., number
of layers), and size of trainable parameters (in Mega-Bytes). Similarly, the Pareto optimal
solutions are well distributed and diverse. This also supports the importance of the exploration
as we can assume a priori which DNN model will be Pareto optimal without actual evaluation
of its performance.

– Optimality of the obtained results: To further investigate the efficiency of the co-exploration, we
select top pairs of (DNN, hardware configuration) from the Pareto front and compare them to
SOTA DNN models under the widely used default configuration proposed by NVIDIA, MAXN.
Table 1 details the obtained results. Our co-optimization approach was able to identify better
solutions in terms of accuracy and hardware efficiency. We can notice power gains of up to 53%
under the same latency constraints. Furthermore, we observe an accuracy improvement of up
to 0.5% on the ImageNet dataset.

Table 3: Performance of the baseline models proposed by AttentiveNAS [20] compared to our top solutions of
(DNN,hw-conf) obtained from the Pareto front approximation of the co-optimization

DNN, hw conf TOP-1 Acc (%) Latency (ms) Power consumption (mw)
AttentiveNAS-A2, MAXN 78.8 29.91 6575
AttentiveNAS-A3, MAXN 79.1 33.51 6575
AttentiveNAS-A4, MAXN 79.8 32.67 7033
AttentiveNAS-A5, AMXN 80.1 35.66 6881
Ours-B0, hc0 79.0 28.85 4744
Ours-B1, hc1 79.6 30.82 4591
Ours-B2, hc2 79.9 33.03 4591
Ours-B3, hc3 80.2 34.10 6118

5 Conclusion

In this paper, we investigated the importance of the joint exploration of DNN and hardware
configurations for edge GPU accelerators. We propose a co-optimization approach based on an
evolutionary algorithm (NSGA-II) to explore these two search scpaces. We aim was to minimize
three objective functions: DNN TOP-1 error, latency, and power consumption. Experimental re-
sults on the Jetson AGX Xavier demonstrated the efficiency of the co-optimization compared to
typical HW-NAS under fixed hardware configurations. Moreover, the top pairs found by our co-
optimization are more energy-efficient with up to 53% gains than solutions found by state-of-the-art
models under the same accuracy and latency constraints. As future work, we plan to enhance our
co-optimization strategy by proposing more efficient selection and recombination operators for
the optimization algorithm. We also aim to investigate more hardware configurations and DNN
benchmarks to showcase the importance of co-optimization.
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1 Introduction

Hyper-heuristics consist in a high-level algorithm performing a search process in a space of low-
level heuristics for a given optimisation problem [1]. A hyper-heuristic is composed of a domain
independent high-level strategy, typically relying on machine learning, that searches, combines or
generates low-level problem-specific heuristics. A given hyper-heuristic is thus designed for a specific
problem due to its low-level component. This work proposes to leverage this limitation thanks to a
novel framework of generative hyper-heuristics, Q-Learning Hyper-Heuristic Framework (QLHHF).
The latter permits to use a class of optimisation problems as an input and it will generate a heuristic
for the given problem after the learning process. QLHHF is applicable to any problem that can be
reduced into a graph-based one, i.e. a solution can be represented by a sequence of nodes from that
graph. A large class of optimisation problems can thus be addressed, including multi-objective and
multi-agent ones, while only requiring the definition of limited number of parameters. It is thus
possible to use QLHHF for solving problem ranging from benchmarks (e.g., travelling salesman or
job-shop scheduling problems) to real-world problems (e.g. drone swarms mobility management).

The proposed QLHHF framework uses Q-Learning (QL) as high-level algorithm. This comes
with two challenges due to the nature of the class of optimisation problems which the framework
can tackle. The first challenge is using Reinforcement Learning (RL) in a multi-agent context
(MARL). This work deals with a fully cooperative setting, i.e. agents share the policy and the
policy function [5]. In addition to this, RL is used here to generate heuristics for potential multi-
objective problems (MORL). In this area, two main techniques exist. The first and most used way
is to define multiple policies and to scalarise them [4]. Another way is to learn “the entire Pareto
front of deterministic non-stationary policies” [3].

2 Proposed Hyper-Heuristic Framework

This section presents the proposed Q-Learning Hyper-Heuristic Framework (QLHHF). In order to
work with any optimisation problem, the latter must be reduced to a Graph-based Multi-Agent
Multi-Objective Optimisation Problem (GMAMOOP). As an example, a use case is represented
as a GMAMOOP in section 3. The remainder of this section first presents the format of low-level
heuristics, i.e. the problem-specific part of the algorithm, and then describes the high-level QL
algorithm.

2.1 Low-level heuristics

A low-level heuristic takes as an input an instance of the wanted problem and returns a feasible
solution. An instance of GMAMOOP considers two graphs: a graph for the environment of the
problem, i.e. a solution must be expressed as a sequence of its nodes; a graph representing the
communication between agents evolving over the environment graph. A solution of a GMAMOOP
instance is thus a sequence of couple agent/node which means that an agent has added a certain
node in the solution. For reasons of consistency, every GMAMOOP objective must be minimised
and define two types of constraints. The hard constraints prevent agents to put any node in the
solution (only nodes which do not violate the constraints). The soft constraints are considered as
objective and do not restrict any choice of node but they are expected not to be violated after the
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learning process. Given a solution S, the vector f(S) thus contains every objective value (for both
the objectives and the soft constraints).

As a low-level heuristic, given a GMAMOOP instance, every agent performs the same process
asynchronously, as shown in Algorithm 1. At each iteration, agents add a node in the solution
until the latter is feasible. The latter choice is made according to a scoring function F evaluating
nodes from a subset X ⊂ N . The methods terminal , get nodes and time are specific to the given
GMAMOOP. These methods must thus be redefined according the problem to which is applied
QLHHF. Algorithm 1 is a template of low-level heuristic since a heuristic is represented by a certain
definition of F . The purpose of the high-level algorithm (here QL) is to find the best definition of
that scoring function F .

Algorithm 1: Template of low-level heuristics

input : Instance I = (Ge, Gc)
output : Solution S

1 S ← ∅
2 foreach Agent a ∈ A do // asynchronously

3 t← 0
4 while ¬terminal(S) do // while S is not feasible

5 X ← get nodes(S, a) // get the nodes to evaluate for agent a
6 n← arg max

n′∈X

F (a, n′)

7 S ← S ∪ {(a, n)t}
8 t← t + time(S, a, n) // add the time for agent a to go to node n

9 end

10 end
11 return S

2.2 High-level algorithm

A QL algorithm is chosen to generate a heuristic for the wanted GMAMOOP, i.e. to find a definition
of F in Algorithm 1. In the RL context, a state is depicted as a GMAMOOP solution. An action for
RL is a couple agent/node which is an item of a solution. The latter thus corresponds to a history of
actions chosen. For the policy, a function QΘ is evaluating an action, i.e. a couple agent/node, from
a certain state, i.e. the current solution. Each agent then choose the node which maximises QΘ. Its
computation is made thanks to a Graph Neural Network (GNN) parameterised by Θ which is used
in [2] and is based on a state variable depending on the given couple agent/node (see section 3 to
see an example of implementation).

When an action is made by an agent, i.e. when a couple agent/node is added in a certain
solution, the reward corresponds to the difference of objective values between solutions before
and after the action. Since a GMAMOOP may be multi-objective, one action may receive several
rewards (one per objective and soft constraint). In order to update the policy, a single reward must
be used. At each action made by an agent, the vectorial reward r received is therefore reduced
to a scalar reward R by summing a convex combination of objective rewards and each constraint
rewards. Each constraint reward is penalised by a non-negative weight so that a violated constraint
inducing a negative reward will lower the global reward R.

R = w⊤rO + λ⊤rC =
∑

o∈O
wo · ro +

∑

c∈C
λc · rc ∈ R (1)

with O and C the sets of objectives and soft constraints respectively,
∑

o∈O wo = 1 and λc ≥ 0
∀c ∈ C. The reward is then stored in a memory along with the action chosen and the solutions
before and after the action as a tuple. At each iteration, a mini-batch is selected from that memory
so that each tuple makes it possible to compute a prediction of the evaluation made by QΘ and the
targeted evaluation depending on the reward computed and an estimation of the future reward.
The value of Θ is thus updated with a stochastic gradient descent step to minimise the squared
loss, where the loss is the difference between the predicted and the targeted evaluations. Secondly,
for each tuple from the mini-batch, the vector of rewards corresponding to soft constraints, i.e. rC ,
is used to update λ. The idea is that if a constraint c has been violated by the action chosen, the
value of λc increases, and vice versa.
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3 Use Case

As a use case for the framework, a variant of the Capacitated Vehicle Routing Problem (CVRP)
has been implemented. Vehicles move on a map by following roads (which correspond to the
environment graph). Several missions are present and consist in moving a package of from a certain
point to another one, i.e. from one node of the environment graph to another one. Each mission
also specifies a time to accomplish it. Table 1 presents the implementation of that problem for
QLHHF.

Table 1. Implementation of a version of CVRP for QLHHF

Parameter Value
terminal(S) true if every mission is accomplished in solution S, false otherwise
get nodes(S , a) starting nodes of missions not taken yet in solution S and ending nodes of missions started by agent a
time(S, a, n) length of the shortest path to node n from the current position of agent a in solution S

state(S, a, n)
time of missions starting at node n in solution S
time of missions ending at node n and started by agent a in solution S
current capacity of agent a in solution S

f (S )
O current time in solution S

sum of delays in solution S for every mission
C maximal capacity in solution S among every agent

Some initial experiments have been conducted with this implementation and have shown good
convergence results. Moreover, with some parameterisation specific to the framework (e.g., learning
rate and discount factor), heuristics generated by QLHHF were able respect the soft constraints.

4 Conclusion

In this work, a novel hyper-heuristic framework based on QL has been presented (QLHHF). The
latter is designed to tackle any graph-based optimisation problems, referred to as Graph-based
Multi-Agent Multi-Objective Optimisation Problems (GMAMOOP). Several implementations have
been experimented and a version of the CVRP has been presented here. The results demonstrate
the ability of QLHHF to generate heuristics with a good convergence, notably by decreasing the
loss. No guarantee of performance have however been shown so far.

Future work will consist in conducting more experiments and statistical tests on the implemen-
tation of CVRP, including comparison with existing methods. More problems are also planned to
be implemented.
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1 Introduction

The use of Micro Hydropower plants (MHPP) constitutes one of the most efficient solutions for the
problem of energy access in remote rural areas, especially in the context of developing countries [1].
These small installations are capable of exploiting the potential energy of a natural water flow to
generate electricity with a minimal environmental impact and a simple equipment. Nevertheless,
the context of poverty of these emplacements is usually conditioned by deficient design strategies,
generally based on personal experience of local technicians and the use of hand rules. For this
reason, the development of efficient and robust design strategies can play an important role in the
application of these technologies to combat energy poverty.

An MHPP basically consists of extracting a fraction of the water flow from a natural course
and conducting it downhill through a long pipe, (penstock) at the end of which the water interacts
with a generation unit and transforms its kinetic energy into electrical energy. It is relevant to note
that the water is returned to its natural course, and thus the environmental impact is almost zero.
The capabilities of an MHPP rely in a correct use of the terrain, reaching the maximum height
difference with the shortest pipe length (as pipe friction lowers the efficiency). When the cost of the
equipment is low, the cost of the deployment can become relevant with respect to the overall cost,
and thus the civil works involved become variables of interest. This, together with the arbitrary
nature of the terrain and the river profile, increases the complexity of the problem and motivates
the use of numerical and heuristic optimization approaches.

2 Related work

The problem of optimally designing MHPPs has been extensively discussed in the literature. nev-
ertheless, the complexity of the problem is such that it has been traditionally addressed from
particular perspectives, such as dealing with the lack of water in dry seasons [2], minimizing the
environmental impact of the plants [3], or improve the viability of these plants through the use of
water distribution systems [4].

The particular problem of optimizing the layout of an MHPP has been typically addressed
from an analytical approach through several simplifications, such as 2D simplifications of the river
profile [5,6], discretizations of the domain [7] or considering a constant river profile slope [8]. As a
significant improvement with respect to previous approaches, this work proposes the optimization
of the layout considering a continuous, 3D formulation of the problem, capable of dealing with an
arbitrary terrain and river profile, using a Genetic Algorithm (GA).

3 Problem modeling

To model the layout of an MHPP, the terrain height is described through a continuous function
z = f(x, y), that can be built as the interpolation of experimental topographic data points. The
river can then be defined as a continuous parametrized curve γ(s) that is contained in the surface
f(x, y). Finally, the MHPP layout is modeled as a parametrized continuous curve Γ that connects
two points (these are the water extraction and the turbine emplacements) from the curve γ, as
shown in Fig. 1. For a robust formulation, the curve γ has been defined as the Cubic Hermite
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spline that interpolates a set of spatial points, named nodes. Thus, any possible solution can be
expressed by a set of n nodes in the form of (xi, yi, ∆z) (being ∆z the relative height of the node
to the terrain), as long as the first and last belong to γ. On the basis of the terrain surface f(x, y)
and the curves γ and Γ , the performance of the resulting MHPP (power, water flow, cost, etc.) can
be determined using an appropriate model, for which the one proposed in [9] has been employed.

Penstock

Village

Extraction

Powerhouse

x

y
z

Extraction
River, γ

Penstock, Γ

Turbine

Fig. 1: Basic scheme of an MHPP (left) and its model through 3D spatial curves (right)

The cost of the installation is calculated in accordance with the model proposed in [7], and
thus includes the cost of the equipment and the cost of the civil works involved in its deployment.
As the generation equipment is sized for the objective power generation level, only the penstock is
considered in the equipment. The costs involved in the deployment of the penstock are based on
the costs of the excavations and the installation of supports required.

4 Methodology and results

A µ + λ Genetic Algorithm has been employed to address the optimization problem developed,
using the coordinates of the nodes of the layout Γ as genes. Given the complexity of generat-
ing feasible individuals with a purely random generation scheme, tailored operators have been
carefully designed and implemented for the initial population generation, mutation and crossover
operations. A greedy search has been applied to determinate the optimal value of the different
hyper-parameters. The most important of these, the crossover and mutation probabilities, have
demonstrated to provide better results at 0.3 and 0.7, respectively. The algorithm has been tested
on an example case study based on designing a 7 kW Pelton installation to supply a remote com-
munity in Honduras, where an aerial topographic survey provided the height map and the river
profile. The different parameters have been chosen in accordance with the emplacement and local
market costs. The main variables relative to the optimal solution have been summarized in Table 1.
Also, the optimal layout has been represented on the terrain in Fig. 2.

Table 1: Performance of the optimal solution
Parameter Value

Power generated (W) 7137.09
Water flow rate (L/s) 13.18
Gross height (m) 101.22
Penstock length (m) 689.10
Pipe diameter (cm) 12
Cost of the civil works (c.u.) 2122.22
Cost of the pipe (c.u.) 24214.47
Total cost (c.u.) 26336.69
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Fig. 2: Layout of the optimal solution

4.1 Conclusion

This work proposes the optimization of an MHPP using a continuous formulation of the problem
from a three-dimensional approach. The problem is formulated as the minimization of the cost of
the plant with a minimum power generation constraint. The problem not only considers the cost of
the equipment, but also the cost of the civil works involved in its deployment, in such a way that
the strongly dependence of the path of the penstock through the terrain and the labor involved in
terrain excavations and installation of supports is considered.

A GA has been developed to solve the optimization problem, for which tailored initial popu-
lation generation, mutation and crossover operators have been designed, given the complexity of
the constraints involved. The algorithm has been applied to a illustrative case study based on a
real case scenario in a remote, small community in Honduras. The real topography of the terrain
and the river profile have been determined through an aerial topographic survey, and an optimal
layout for the MHPP has been precisely determined. The obtained solution permits the generation
of 7.13 kW, using a flow rate of 13.18 L/s, and having a total cost of 26.336 c.u. The analysis of the
solution obtained demonstrates how the algorithm builds a layout cutting through rough terrain,
thus demonstrating the benefits of using the 3D approach with respect to traditional 2D simplified
approaches in the literature.
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1 Introduction

Image Alignment (IA) has become an important task to be taken into account in real-world appli-
cations. IA is the process of overlaying images to be able to further analyze them. It is a crucial step
because many systems rely on obtaining the correct formatted data to take a posteriory decision.
This concept comes from a more generic one called image registration. IA was initially introduced
by Lukas, Kanade et al. in [1].

In this work, we tackle the Dynamic Optimization Problem (DOP) of IA in a real-world appli-
cation using a Dynamic Optimization Algorithm (DOA) called Fractal Decomposition Algorithm
(FDA), introduced in [2] by Nakib et al.. We used FDA to perform IA on CCTV camera feed from
a tunnel. As the camera viewpoint can change by multiple reasons such as wind, maintenance,
etc. the alignment is required to guarantee the correct functioning of video-based traffic security
system.

The rest of this paper is organized as follows. First, Section 2 introduces the problem for-
mulation. Then, Section 3 recalls the FDA foundations. Afterwards, 4 introduces the conducted
experiments and explains the obtained results. Finally, in Section 5 the conclusions are presented.

2 Problem Definition

In this real-world application, we aim to solve the dynamic optimization problem of aligning a
camera image that has been shifting over time (see Figure 1).

Fig. 1. Left: Images obtained from the camera at time t− 1. Right: Images obtained from the camera at
time t. A shift in the camera can be observed including translation and rotation distortions.

To do so, we optimize the matrix H (see Equation (1)) containing 8 Degrees of Freedom (DoF)
that correspond to image geometrical transformation (such as translation, rotation, skewing).

H =



DoF11 DoF12 DoF13

DoF21 DoF22 DoF23

DoF31 DoF32 1


 (1)

The direct and inverse transformation are given in Equation (2).

I1 ·H = I2

I1 = I2 ·H−1
(2)
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Therefore, given two images I1 and I2 that have been captured using the same camera (from the
same position, just changing its viewpoint), and that have a view overlap, it should exist a matrix
H that let us transform the content of one image into the other one. Specifically, the values in H:
DoF11, DoF12, DoF21 and DoF22 estimate the rotation. Parameters DoF13, DoF23 estimate the
translation. Finally, DoF31, DoF32 estimate the skewing effect. Parameter H33 is used for the scale
magnitude. Given the problem setup it can be fixed to a constant value of 1.

To perform estimation of the H matrix parameters, a set of point have been initially detected
and described in both images. These points were then pairwise matched based on the descriptors
similarity (see Figure 2 for an illustration). We formulate the IA as a dynamic optimization problem

Fig. 2. Sets of images containing the detected and matched keypoints.

by considering the loss function Lloss that provides the (partial) sum of distances between pairs
of matched keypoints after apply the transformation H on one point from the pair (see Equation
(3)).

errork = dL1

(
keypointkI2 , keypoint

k
I1 ·H

)

Lloss =
∑

errork<Pi(errors)

errork (3)

More specifically, we use L1 distance between pairs of points. When calculating the loss function
we take into account lower the distances up to a certain ith percentile Pi. For the experiments
we found empirically the value of i = 80 to perform well. We use the percentile to smooth the
optimization function (e.g. filter non-properly matched keypoints).

3 Methodology

To solve the stated problem, we propose to use FDA to deal with this dynamic environment. More
specifically, FDA uses a fractal decomposition structure based on hyperspheres (see Figure 3) to
explore the search space, and an Intensive Local Search (ILS) method to exploit the promising
regions. It was shown in [3] that this approach is exceptionally beneficial in high dimensional space

Fig. 3. Left: 4-level decomposition using the hypersphere fractal structure. Right: Representation of the
hypersphere fractal decomposition with inflation coefficient to ensure that the search space is fully covered
given a particular dimension.

problems. Herein, our goal is to demonstrate that FDA can also provide accurate results in a low
dimension dynamic optimization problems and can be successfully applied to solve a real-world
task.

4 Results

The Figure 4 illustrates the optimization process. The red dashed line shows the best fitness error
in the current period, and blue line gives the current fitness error obtained at a given evaluation.
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Fig. 4. Graph providing the dynamic optimization experiments. In blue the fitness error (obtained from
the loss function) can be seen. In red the best fitness error obtained so far during this period of time is
shown. Particularly, it can be observed that a camera has moved over time 5 times (red peaks).

In Figure 5 a pair of blended images is given in the same coordinate space showing that FDA
has provided accurate results.

Fig. 5. Sets of blended images represented in the same space showing an accurate match.

5 Conclusions

In this paper, we presented a real-life use case of applying FDA. The obtained results demonstrate
the efficiency of the method for solving the problem of image alignment. For the future work, we
plan to extend FDA to deal with higher dimensional real-world problems (e.g. computer vision) to
further validate the FDA’s capabilities.
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1 Introduction

The Transformer [15] is a recent Deep Learning model originally created as a seq-to-seq model for machine
translation. It achieved state-of-the-art results on this problem. Thus many research has been made to apply
this architecture on various fields such as computer vision [1–3,7,10,11], time series forecasting [8,16,17] or
signal processing [5]. Transformers rely on self-attention to model dependencies in sequences regardless of
the distances between input elements positions. Self-attention flexibility makes it relevant to model complex
temporal correlations with both long- and short-term dependencies.

Multiple variants of the original architecture (a.k.a. X-formers) [9] have emerged in the literature. The
Google Brain Team created a meta-architecture for Transformers, the Evolved Transformer, to perform
Neural Architecture Search with an application to NLP [12]. We propose in this paper a search space with
fewer parameters to represent relevant Transformers architectures for time-series forecasting. It will then be
possible to use any meta-heuristics to optimize this meta-model.

2 Background

The Vanilla Transformer: The vanilla Transformer [15] is a seq-to-seq model created in 2017 for machine
translation. It is composed of an encoder and a decoder, each of them is a stack of N identical blocks. Each
block is a sequence of a self-attention module followed by a Feed-Forward Layer. The block is completed
by Normalization layers to prevent vanishing gradient and residual connections. The encoder blocks can be
summarized as:

X1 = NormalizationLayer(Attention(X) +X)
X2 = NormalizationLayer(FFN(X1) +X1)

Where X is the block input. The Attention mechanism is based on a Query-Key-Value (QKV) model.
Given Q ∈ RN×DQ , K ∈ RM×DK and V ∈ RM×DV being the matrices packing together the sets of queries,
keys and values, the self-attention can be defined as:

Attention(Q,K, V ) = softmax(QKT

√
DK

)V

The Transformer does not directly use self-attention but multi-head attention instead. The original
queries, keys and values are projected into smaller sub-spaces using the projection matrices WQ, WK , WV .

MultiheadAttention(Q,K, V ) = concat(H1, ...,Hh)W
O

where Hi = Attention(QWQ
i ,KW

K
i , V WV

i )

Two types of attention are used within the Transformer model. First, the self-attention, where the keys,
queries and values are identical: Attention(X,X,X). This attention is used in the encoder and at the
beginning of the decoder. Then, the cross-attention uses decoder input as queries and encoder output as
keys and values: Attention(Xd, Xe, Xe).

⋆ Supported by EDF.
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3 Methods

Multiple Transformers architectures deriving from the Vanilla Transformer have emerged for time series fore-
casting. We created a meta-architecture able to generalize the four best promising models found in literature:
the Vanilla Transformer [16], the Informer [17], the LogSparse Transformer [8] and the SpaceTimeFormer [4].
The main differences between those architectures remain in the input representation, the operations in the
encoder/decoder cells and the type of attention used. Fig 1 represents a general representation of this
meta-architecture.

Data Embedding: We define the input data as X = [X t0 , ...,X tN ], where X t = [xt1, ..., x
t
M ] ∈ RM . The

features composing X t can be grouped into X t
Continuous containing the real time series (for example a

weather or price indicator) at time t and X t
Categorical with the integer encoding time series (for example

time context values). As the input is not necessarily sequential the absolute position in the sequence of each
item X t

Pos ∈ R is also fed to the model. Given those three sub-sequences, the input representation (or data
embedding) can be defined as a function Emb : RM −→ Rdmodel such that:

X t
emb = PositionEncoding(X t

Pos) +RealEmbedding(X t
Continuous) + IntEmbedding(X t

Categorical)

Cells: The four models share a similar global architecture: an encoder and a decoder made of stacked identical
cells. For the encoder, those cells are composed of three blocks. We define a block as a sequence between a
layer (attention, feed-forward, convolution, etc) and an assembling strategy (add & norm, concatenation &
pooling, etc). The blocks characteristics are set by the layer type. The three main layer types are Attention,
Feed-Forward and Convolution. The Encoder cells are composed of three blocks where the first one is
necessarily a self-attention block. The Decoder cells are composed of five blocks where the first one is a self-
attention block, the third one a cross-attention block and the last one a feed-forward block, as represented
Fig 1.

Attention: The attention layer in the attention block can be customized. We generalized the attention
formulation via the lens of kernel [14]:

∀xq ∈ P(Q,K) : Attention(xq,M(xq,K)) =
∑

xk∈M(xq,K)

K(xqx
T
k )∑

x′
k∈M(xq,K) K(xqx′Tk )

xk (1)

Where P(Q,K) ⊂ Q corresponds to the query-prototyping. It selects the relevant queries for the attention
computation. K(xqx

T
k ) is the kernel function which computes the attention scores. M(xq,K) ⊂ K is a

sparsity mask that limits the keys and values to which the query has access. M can be represented as a
matrix LQ ×LK filled with 0 and 1. Each row corresponds to a query and each column to a key. If a box is
set to 1, then the query associated with the box row has access to the corresponding column key.

Metaformer

Data Embedding Encoder

Number of cells Cells

Decoder

Number of cells Cells
Position Encoding

Real Embedding

Integer Embedding

Attention Block

Block Type

Block Type

Attention Block

Block Type

Attention Block

Block Type

FFN Block

Fig. 1. Metaformer: Meta-Transformer Architecture for time series forecasting
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Search Space: The presentation of a solution is expressed as: [dimension model, learning rate, normalization
position] + [position embedding, value embedding, temporal embedding, dropout rate after embedding] +
[number of encoder cells, encoder normalization layer, dropout rate] + encoder self-attention block param-
eters + encoder block 2 parameters + encoder block 3 parameters + [number of decoder cells, encoder
normalization layer, dropout rate] + decoder self-attention block parameters + decoder block 2 parameters
+ decoder cross-attention block parameters + decoder block 4 parameters + decoder feed-forward block
parameters]. The blocks have a variable number of parameters: [query prototyping, mask, convolution] if
attention block, [hidden dimension, activation function] if feed forward block and [convolution type, kernel
size, activation function, pooling size] if convolution block or [] if none block. The number of parameters η
verifies:

η ≤ 3︸︷︷︸
General

parameters

+ 4︸︷︷︸
Data

Embedding

+ 3︸︷︷︸
General
Encoder

+ 3︸︷︷︸
Attention
Encoder

+ 8︸︷︷︸
2 Blocks
Encoder

+ 3︸︷︷︸
General
Decoder

+ 6︸︷︷︸
2 Attention
Decoder

+ 2︸︷︷︸
FFN

Decoder

+ 8︸︷︷︸
2 Blocks
Decoder

= 40

Optimization: We are in the case of a Mixed-Variable Optimization Problem (MVOP), with mixed param-
eters types: continuous, categorical, discrete and a variable number of parameters. Our objective function is
the model error on the test dataset, which requires training the model. Because of the expensive objective
function and the variable size of the solution representation, we simplified our representation by using a
cell-based strategy [13]. We defined several typical blocks with fixed parameters inspired by the ones found
in the literature. In this search space, any meta-heuristic can be used.

4 Experiments

Datasets:
RTE: With the deregulation of the electricity market, the equilibrium between supply and demand gained
importance for the french TSO: Réseau de Transport d’Electricité (RTE). As electricity cannot be stored
on a large scale, RTE needs the most accurate half-hourly consumption forecasts to ensure grid stability.
The national load consumption is an open-source dataset that can be found online (https://opendata.
reseaux-energies.fr/pages/accueil/). Load data is highly fickle and depends on exogenous data such as
weather indicators: temperature, wind speed or cloudiness and calendar events: month, weekday, holidays,
time change, etc. The weather data used for this experiment is not open-data but equivalents can be found
online. We worked on a dataset from 2014 to 2020. We used the years from 2014 to 2017 as the training set,
2018 as the validation set and 2019 as the testing set (to prevent the Covid-19 lockdown effect).
ETT: This dataset is used in the Informer architecture paper [17]. ETT states for Electricity Transformer
Temperature. We chose the ETTh1 dataset containing two years of data at a 1-hour level.

The implemented search space can be found in Table 1. We chose Simulated Annealing as a metaheuristic
to test our meta-architecture. We performed four optimizations, each starting with one of the four architec-
tures found in literature: Vanilla Transformer, Informer, LogSparseTransformer and SpaceTimeFormer. The
results can be found Table 2 for the ETT dataset and Table 3 for the RTE dataset. On the ETT dataset,
we managed to reduce by 30% the error and by 50% for the RTE dataset using our meta-architecture.
The masks in the attention layers have a significant impact on the result. Unlike convolutional or recurrent
architectures, the Transformer only makes a few assumptions about the data structure: time-invariant, lo-
cality, etc [9]. Therefore, the Transformer needs lots of data to perform. On our small datasets, the mask
can give extra information on the data structure. The band mask, for instance, which only gives access to
the closest keys, offers often better results. We believe giving even more flexibility to the model for the mask
optimization could improve the results.

5 Conclusion

The goal of this project was to propose a meta-architecture for transformers applied to time series forecasting.
Our starting point was four architectures applied to time series forecasting found in the literature. We
managed to build a search space generalizing those architectures. This search space corresponds to a Mixed-
Variable Optimization Problem where any meta-heuristics can be applied. We used two datasets to show
that our meta-architecture achieved better results than the original architectures when optimized using a
Simulated Annealing. We managed to reduce the error by 50%.
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Table 1. Selected parameters and bounds

Name Type Bounds

Model Dimension Discrete [100, 600]

Learning Rate Continuous [0.0001, 0.5]

Normalization Position Categorical [pre, post]

Embedding Categorical [sinus, convolution, linear, temporal, t2v [6], identity, none]

Dropout Continuous [0.1, 1]

Cells Number Discrete [1, 8]

Normalization Layer Categorical [BatchNorm, LayerNorm]

Query Prototyping Categorical [None, Prob]

Mask Categorical [full, triu, global, band, dilated, star, random, bigbird, log]

Convolution Boolean [true, false]

Hidden dimension Discrete [2, 200]

Activation function Categorical [swish, relu, leaky relu, sigmoid, softmax, gelu, elu, none]

Convolution type Categorical [causal, down, separable]

Kernel size Discrete [1,96]

Pooling size Discrete [1,96]

Table 2. Experiments results for the ETT dataset. The first column contains the results
using the original architectures and the second one the results using the MetaFormer
starting from the corresponding architecture.

Architecture
Original Optimized

MSE MAE MSE MAE

Vanilla Transformer 0.05 0.185 0.0039 0.0505

Informer 0.0129 0.0906 0.0047 0.0618

LogSparse Transformer 0.0174 0.109 0.0114 0.0811

SpaceTimeFormer 0.0269 0.139 0.0167 0.111

Table 3. Experiments results for the RTE dataset. The first column contains the results
using the original architectures and the second one the results using the MetaFormer
starting from the corresponding architecture.

Architecture
Original Optimized

RMSE MAPE RMSE MAPE

Vanilla Transformer 6210 9.72% 3725 4.81%

Informer 6400 9.73% 3601 4.39%

LogSparse Transformer 5990 8.94% 3712 4.75%

SpaceTimeFormer 7490 11.76% 5882 9.08%
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1 Introduction

Optimizing a non linear, non convex, derivative free, or black-box objective function in a high
dimensional and continuous search space is a complex task. Commonly we consider a minimization
problem for an objective function f : X ⊂ Rn → R:

x̂ = argmin
x∈X

f(x) (1)

With, x̂ the global optima, f the objective function, and X a compact set made of inequalities
(e.g. upper and lower bounds of decision variables).

In this paper we are interested in a particular class of optimization algorithms, which could be
grouped as branch and reduce or divide and conquer methods for hierarchical search space par-
titioning. DIviding RECTangle (DIRECT) [1, 12] is one of the most popular algorithm belonging
to this class. It is based on the Lipschitzian assumption of the objective function, which allows to
compute lower and upper bounds of subrectangles dividing the search space. Furthermore Deter-
ministic/Simultaneous Optimistic Optimization (DOO/SOO) [3, 4] can be seen as a generalisation
of DIRECT. Other decomposition-based algorithms are using a different paradigm, such as FRAC-
TOP [5] which uses hypercubes, or Fractal Decomposition Algorithm (FDA) [6] using hyperspheres.
All those algorithms are sampling in a high dimensional space by building smaller subspaces.

Along these lines, our goal is to unify all previous approaches by describing and building a com-
mon framework based on fractal decomposition, thus facilitating the development of new algorithms
based on decision space partitioning using exploration or exploitation metaheuristics, and finding
new ways to balance diversification and intensification [7]. Such generalisation will also help to
find unified methods to parallelize those strategies in a distributed environment. Fractal decompo-
sition paradigm is based on the recursive and auto-similarity properties of fractals in an Euclidian
space. In addition, to overcome the proof-of-concept implementation, our goal is to build a Python
framework called Zellij using a modular programming approach. Thus we can develop indepen-
dent and distinct modules, which, when assembled allows to easily develop various and new Fractal
decomposition algorithms.

2 Generalized fractal partitioning

We previously described some space partitioning algorithms from branch and reduce and divide and
conquer traditional approaches. Our main goal is to unify those approaches, thus allowing to gen-
eralize this family of algorithms. This will also open new possibilities to design new decomposition-
based algorithms. Here, our contribution is to deepen some aspect of the abstraction, to show that
this problem concerns many research communities. To sum up, fractal decomposition algorithms
can be described by the following concepts:

– Geometrical fractals objects: selecting a particular hypervolume has a major impact on
the partitioning. Those impacts can be measured by six main criteria: building complexity,
memory complexity, tree building complexity, space coverage, tiling regularity, and overlapping
(Fig.2). The most complex is the Voronöı diagram. (Fig.2e,2f) Indeed we cannot build the
exact diagram in high dimensions [13, 14]. Therefore, we have to use stochastic methods to
build an approximation, such as SpokeDart with hyperplane sampling [13].
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– Tree search algorithm: the partition of the search space can be stored in a rooted partition
tree. The root is the initial search space, and nodes are subspaces. The choice of a good
algorithm is crucial to efficiently explore and exploit the partition. By introducing pruning
strategies, one could also tackle the memory size problem. Popular algorithms are Best First
Search, Beam Search, or Epsilon Greedy Search.

– Sampling strategy: Sampling in high dimensional spaces is complex. Moreover, one does
not sample in exactly the same way in a hypercube or in a hypersphere. In DIRECT or SOO
[1, 3], only the center of the hyperrectangle is used. Our appraoch tends to overcome this, by
considering deterministic or stochastic, and unique or multiple points methods to sample inside
a hypervolume.

• Exploration: The exploration could be done in a passive (MCMC sampling [8], low dis-
crepency sequences [9]...) or active way (metaheuristics [10], surrogate model [11]). The
challenge here is to find sampling strategies and adapt them inside complex volumes (e.g.
polytopes).

• Exploitation: When a fractal reaches maximum depth of the partition tree, an exploitation
algorithm is applied in this fractal. This intensification phase is not constrained inside
a subspace. The only bounds will be ones from the initial decision space, so that the
exploitation can move freely toward a local or global optimum. Here we could use local
search such as Simulated annealing, or Evolutionary algorithm such as CMA-ES. [10]

– Scoring: Determining if a subspace is promising or not is essential. Indeed, in FDA the balance
between exploration and exploitation of the tree, is made by a scoring method. We can use
best computed score, mean, median, distance to the best [6], belief [5]...

The Zellij workflow is described in Fig.1. We can see in green all independent modules, this allows
to freely develop and combine independent tree search algorithms, hypervolumes, scoring heuristics,
metaheuristics and sampling methods. We can for example reproduce DIRECT algorithm with, a
trisection as the geometrical object, potentially optimal rectangle for the tree search algorithm, a
subspace will be scored with the best and worst solutions found along longest dimensions, for the
exploration strategy: rectangles center, and no exploitation. For FRACTOP, Hypercubes, Best First
Search, Belief scoring, Genetic Algorithm for exploration and Simulated annealing for exploita-
tion. Further modules should be developed to encapsulate precedent ones and add parallelization
methods to Zellij.

Fig. 1: Zellij workflow
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(a) (b) (c) (d) (e) (f)

Fig. 2: Various examples of fractals and their tree building complexity, (a) hypercubes O(2d), (b)
bisections O(2), (c) trisections O(3), (d) hyperspheres O(2d), (e) dynamic Voronöı O(s), (f) fixed
Voronöı O(s), s is the number of centroids at each iteration, d is the number of dimensions

3 Conclusion

We described a generalization of divide and conquer algorithms using a Fractal decomposition
paradigm. A Python package named Zellij has been developed. Thanks to this framework we
are able to model various approaches such as DIRECT, SOO, FRACTOP, FDA and much more.
Furthermore, the modular programming standard used in Zellij, allows to quickly prototyping new
algorithms.

Future works will focus on experimentation using Zellij. We will compare, on standard benchmark
functions, previous divide and conquer algorithms with state of the art algorithms, such as CMA-ES
or Bayesian Optimization. This will be an opportunity to study the effects of curse of dimensionality
on such methods, and maybe identify a way to take advantage of blessing of dimensionality. We
will try to find, new fractal objects (simplices [15]), ways to sample inside convex polytopes,
scoring methods, and tree search algorithms. In a long term perspective, we want to tackle the
parallelization issue by making it as modular as the current paradigm of Zellij. Finally, we want
to use Zellij to solve complex optimization problems such as the HyperParameter Optimization
(HPO) problem in deep neural networks, which will require to adapt our approach to variable
space and mixed variables on expensive optimization problems.
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Abstract. Modern machine learning, including deep learning models and reinforcement
learning techniques, have proven effective for solving difficult combinatorial optimization
problems without relying on handcrafted heuristics. In this work, we present NOFSS, a Neu-
ral Order-First Split-Second deep reinforcement learning approach for the Capacity Con-
strained Vehicle Routing Problem (CVRP). NOFSS consists of a hybridization between a
deep neural network model and a dynamic programming shortest path algorithm (Split).
Our results, based on intensive experiments with several neural network model architec-
tures, show that such a two-step hybridization enables learning of implicit algorithms (i.e.
policies) producing competitive solutions for the CVRP.

Keywords. Neural Combinatorial Optimization Capacitated Vehicle Routing Problem
Order-first Split-second Deep Reinforcement Learning

1 Introduction

Modern machine learning, including deep learning models and reinforcement learning techniques,
have proven effective for solving difficult combinatorial optimization problems without relying on
handcrafted heuristics [1]. The framework known as Neural Combinatorial Optimization (NCO),
which proposes to solve combinatorial optimization problems using recent neural networks archi-
tectures, is in this context widely studied for routing problems such as the traveling salesman
problem (TSP) [2–5] and the capacitated vehicle routing problem (CVRP) [6, 5].

Current NCO approaches implement a construction-based strategy. For the CVRP, such ap-
proaches build (i.e. construct) candidate solutions step by step, by selecting at each time step either
to visit a client or to go back to the depot to refill, until each client is served. The action to perform
at each construction step is chosen based on a probability distribution that will be estimated by a
deep neural network, either using supervised or reinforcement learning. This discrete probability
distribution defines the probability that an extension of the partial solution under construction,
considering each available choices (unsatisfied clients and depot), will lead to the optimal solution.
Considering such construction-based NCO approaches, solving the CVRP is therefore reframed
as a learning goal aiming to obtain a good estimate of the probability distribution, such as step
decisions based on this estimate minimize solution costs.

Using such an approach, the models handle both clients routing and returns to depot. In this
context, choices of when to return to the depot are critical. Indeed, more returns to the depot can
de facto lead to candidate solutions with a number of tours1 greater than the optimal one. This will
result in models failing to efficiently learn interesting resolution strategies, i.e. routing policies, due
to poor quality candidate solutions, and/or large computational costs inducing prohibitive learning
process (millions of learning steps). Handcrafted heuristics and metaheuristics may nevertheless
be used to handle return to depot by using an exact tour splitting algorithm - solving a shortest
path problem in an auxiliary graph that represents the clients’ visit order [7, 8]. Inspired by this
problem decomposition, this paper presents NOFSS, Neural Order-First Split-Second, a novel two-
step learning-based approach proposing to:

1. Learn how to order clients into a giant tour, using a deep neural network.
2. Optimally split the giant tour into a feasible solution using an exact split algorithm.

⋆ This work used HPC resources of IDRIS (allocation 2022-AD011011309R2) made by GENCI.
1 A tour is the ordering of clients the vehicle will visit before returning back to the depot. The optimal

number of tours will therefore depend on client’s demands and vehicle capacity.
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NOFSS is a generic approach that will be introduced and tested in the context of CVRP, even
if it may be used for a larger class of routing problems. NOFSS relies on a deep neural network that
learns a giant tour policy and a dynamic programming algorithm, called Split [8]. Split modifies
the giant tour into a feasible solution with respect to vehicle capacity and clients demands. It acts
as an oracle that provides feedback on the quality (the total travelled distance) of the giant tour
generated from our neural network. This makes it possible to train the NOFSS model through
REINFORCE algorithm.

Alongside NOFSS introduction, we present an extensive comparison of various NOFSS and
NCO models with state-of-the-art CVRP (meta)heuristics. Results show that, by exploring the
search space of giant tours, NOFSS allows to implicitly learn competitive routing policies. 2

The paper is organized as follows: Section 2 formally introduces the CVRP and notations;
Section 3 introduces related work focusing on approaches based on machine learning; Section 4
presents NOFSS; Section 5 presents the experimental protocol as well as results. Discussions and
perspectives conclude the paper.

2 Problem Statement

The Capacitated Vehicle Routing Problem (CVRP) is one of the basic types of routing problems
where information associated with the clients, the depot and the vehicles are deterministic and
known in advance. We consider a set of n clients dispatched on the Euclidean plan and a single
depot. In the depot, there is a fleet of homogeneous vehicles with identical transport capacity C. We
associate to the clients their coordinates (xi, yi) and their demands of goods to deliver 0 ≤ di ≤ C
(i ∈ {1, ..., n}). We associate to the depot its coordinates (x0, y0). The demands cannot be split,
meaning that a vehicle must satisfy the demand at once. The objective is to minimize the total
travelled distance when serving all the clients.

The problem can also be formulated using graph theory [9]. We consider a complete graph
G(V,E), where V = {0, ..., n} is the vertex set (the vertex 0 represents the depot) and E = {(u, v) ∈
V × V, u ̸= v} is the edge set. We associate with each edge a cost defined as the distance between
two vertices. We can represent it as a cost matrix D where Duv =

√
(xu − xv)2 + (yu − yv)2,

(u, v) ∈ E. The goal is in this case to find simple circuits called tours such that all clients are
served without transgressing the vehicles’ capacity and the total travelled distance is as minimum
as possible.

3 Related Work

3.1 Neural Combinatorial Optimization (NCO) for the CVRP

We refer to the use of end-to-end deep neural network approaches for solving difficult combinatorial
optimization as the Neural Combinatorial Optimization (NCO) framework [3]. In this section, we
review the use of this framework to learn construction-based policies for routing problems.

Although the use of neural networks for solving combinatorial optimization problems dates back
longer than the appearance of modern deep learning architectures [10], their use has faded away
in favor of more efficient metaheuristics. The success of deep learning and reinforcement learning
has revived the interest in studying deep neural networks for solving this class of problems. More
precisely, with the appearance of the sequence-to-sequence type approaches and the attention
mechanism. The general framework (Figure 1) considers two neural networks called respectively
encoder and decoder, which can be of different types. The encoder generates the embeddings of each
element of a problem instance (clients and depot). Embeddings can be viewed as an alternative
representation of the element in a higher dimension vector space (Rd with generally d = 64 or
d = 128). This representation is intended to encompass meaningful features that will be used during
the decoding phase. The decoder uses the history of the already visited elements (clients or depot)
to compute a query vector that summarizes the solution under construction through a single vector.
The query along with the embeddings are used to compute a probability distribution of selecting

2 Our implementation and results will be available on the following repository
https://github.com/AYaddaden/NOFSS
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the next element via an attention module. To do so, the attention module confronts the query
q ∈ Rd to the elements embeddings ei ∈ Rd in order to give attention scores si either via a scaled

dot-product (i.e. si =
q·eTi√

d
) or via an additive attention defined as si = vT · tanh(Wq · q +We · ei)

with Wq,We ∈ Rd×d, v ∈ Rd being learnable parameters. The scores si will be converted into a
probability distribution by a softmax function3.

Pointer Networks [2] was the seminal work that considered training LSTM-based encoder and
decoder along with an additive attention module via supervised learning on a dataset of TSP in-
stances. The approach successfully solved instances of sizes between 10 and 50 cities. It was next
improved by using a policy-based reinforcement learning algorithm for training, namely REIN-
FORCE with critic baseline, thus avoiding the need of a supervision, i.e. to have ground truth
optimal solutions for the TSP dataset’s instances [3]. Reinforcement learning proved to be more
effective for training models on instances of size between 20 and 100 cities, thus achieving better
results than Pointer Networks.

Nazari et al. [6] applied the NCO approach to CVRP. Their model considered 1D convolutions
instead of an LSTM encoder in order not to bias the model on the inputs’ order – LSTM are indeed
better suited for modeling sequences where input’s order matters. Comparison with classic CVRP
algorithms (Clarke and Wright savings heuristic and the Sweep algorithm) shows that the deep
neural network model performs better on training and test instances’ sizes ranging from 10 to 100
clients. It appears also, that the choices of the encoder and decoder are of extreme importance
in order to improve the learned policy. The Attention Model (AM) improves the results on the
TSP and the CVRP by introducing a model entirely based on the attention mechanism [5]. It
uses a Transformer encoder and computes the query vector using a Multi-head attention [11]. The
Transformer encoder allows taking into account the graph structure of the TSP and the CVRP
in the same way Graph Neural Networks do, thus giving a better representation of the instances.
Also, they introduce a new baseline for the REINFORCE algorithm; a greedy rollout baseline that
is a copy of AM that gets updated less often.

Fig. 1. The general encoder-decoder framework used to solve routing problems. The encoder takes as input
a problem instance X and outputs an alternative representation H in an embedding space. The decoder
iteratively constructs the candidate solution Y by adding a client or a depot yt at each step t until all
clients are visited.

3.2 Two-step algorithms for the vehicle routing problem

Classical two-step construction approaches for solving the CVRP involve (i) partitioning the clients
into feasible clusters with regard to vehicle capacity and (ii) ordering them into routes of minimum
length. Based on how the two operations are orchestrated, we can distinguish two types of two-step
algorithms: Cluster-first Route-second and Order-first Split-Second.

In Cluster-first Route-second algorithms, the clients are first grouped together following the
vehicle capacity constraint, then a traveling salesman problem is solved for each cluster using an

3 softmax(si) = exp(si)∑K
j=1 exp(sj)
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exact solver or heuristics. The Sweep algorithm is the most common algorithm of this type [12].
Feasible clusters are constructed by considering the polar angle between the clients and the depot,
then for each cluster a TSP is solved. An extension of this algorithm called the petal algorithm
considers generating several routes and selects the final routes of the solution by solving a set
partitioning problem [13]. Another work considers obtaining the clusters by solving a generalized
assignment problem [14]. One major drawback of this approach is that it is not computationally
efficient due to the clustering algorithms [15].

On the other hand, Order-first Split-second algorithms consider first ordering the customers
into a sequence called a giant tour, to then, decompose it into a set of feasible tours considering
the vehicle capacity. Traveling salesman problem heuristics are used to get giant tours, and the
CVRP tours can be obtained optimally from the giant tours by solving a shortest path problem,
as we will detail later. The first documented approach of this type generates the giant tour by
random permutation of clients’ visit order, followed by a 2-opt improvement, and then builds the
routes using Floyd’s algorithm [7]. Prins proposed the first genetic algorithm for the CVRP that
relies on the Order-first Split-second approach, which was competitive with the best metaheuristic
at that time (Tabu Search) [8]. In their approach, the authors proposed a representation of the
chromosomes as giant tours and introduced the Split procedure based on an auxiliary acyclic graph
generated on top of a giant tour. Bellman’s algorithm is used in order to extract the feasible routes.
HGS, today’s state of the art metaheuristic for the CVRP, also uses a giant tour representation
and the Split algorithm [16].

The Order-first Split-second approach is appealing. A recent review of this approach surveys
more than 70 research papers that build heuristics and metaheuristics to successfully solve vehicle
routing problems [17]. Computationally, it is less expensive to build a giant tour and then to split
it than building clusters of clients. Also, the search space is reduced to the space of giant tours
instead of the direct solution representations with depot placement. As highlighted in the survey,
this search space reduction does not make the optimal solution unattainable, since there is an
optimal giant tour which corresponds to the optimal solution. In addition, for a given giant tour,
only its optimal split is retained. This ensures to prevent too many poor quality solutions from
appearing often.

3.3 Graph Neural Networks

Since CVRP instances can be modelled as a graph, it is interesting to use neural networks that
takes advantage of this structure. This makes Graph Neural Networks (GNNs) an ideal choice to
compute a representation of an instance that captures useful information for the resolution process.
We define a GNN by stacking K GNN blocks. Each block k relies on message passing in order
to compute the node embeddings hku, ∀u ∈ V . This mechanism can be viewed as a differentiable
function that computes node embeddings as follows: hku = F (hk−1

u , {hk−1
v }v∈N (u), {e(u, v)}v∈N (u)),

with N (u) being the set of the neighbor nodes of a node u ∈ V and {e(u, v)}v∈N (u) the set of edges
that link the node u to its neighbors v ∈ N (u). We use the instance features as an initial input
of the first GNN block. The function F itself relies on two mechanisms: neighborhood message
aggregation and node embedding update, defined as:

m(k)
u = Aggregate

(
{h(k−1)

v }v∈N (u), {e(u, v)}v∈N (u)

)

h(k)u = Update(h(k−1)
u ,m(k)

u )

Aggregation can either be the mean, the maximum or the sum of neighbors’ node embeddings.
It can also be a weighted sum with weights computed using an attention mechanism [18]. It can
take into consideration the edge weights of the neighboring nodes e(u, v). The update function
is a deep neural network that computes a new node embedding by using the message from the
aggregation and the node embedding from the preceding block. Graph neural network models differ
depending on the choice of the Aggregate and the Update functions.

We can distinguish two families of GNNs: spectral and spatial GNNs. Spectral GNNs rely on
spectral graph representations based on graph signal processing theory, such as GCN [19]. Spatial
GNNs, such as GAT [18], exploit the graph topology. Refer to Zhou et al. for a GNN review [20].

In the next section, we describe how we use the Split algorithm along with the NCO framework
to train GNN models for solving the CVRP.
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4 The Neural Order-first Split-second algorithm

As mentioned in the previous section, actual NCO construction-based policies for the CVRP pro-
duce a sequence by routing the clients and choosing when to return to the depot iteratively until
all clients are served. These policies may lead to more returns to depot than necessary and produce
poor quality solutions. For example, a policy can decide to refill in the depot after serving each
client even if the vehicle capacity allows for serving more than one client at once. Learning from
poor quality solutions can slow down and hamper the learning process and produce suboptimal
policies. Instead of this, we propose to let the deep neural network build an indirect solution rep-
resentation via the construction of the giant tour and to delay the routes construction to the Split
algorithm. Thus, our neural network implicitly learns to solve vehicle routing problem instances
by exploring the space of giant tours. Alternatively, we can view the neural network’s output as
a permutation of the clients’ visit order, which is close to what is done in works for the TSP [3,
4]. This also simplifies the masking procedure used to avoid the appearance of a client twice in
the solution. Another advantage of this approach is that the neural network can learn different
policies depending on the variant of the vehicle routing problem (e.g. Capacitated VRP, VRP with
Time Windows) without additional adaptation. The Split algorithm will handle the additional
constraints, and the neural network learns the policy accordingly. Unlink other learning-based con-
struction approaches that build a solution in a variable number of steps due to the return to the
depot to refill, our neural network builds the giant tour in a fixed number of steps equal to the
number of clients in the instance. Algorithm 1 presents the general approach that will be detailed
afterwards.

For a given instance X of the CVRP, our neural network defines a stochastic policy that outputs
the probability of generating a giant tour as a sequence Y . Using the probability chain rule, and
with θ the parameters of the neural network, this policy is defined as follows:

Pθ(Y |X) =

n−1∏

t=0

pθ(yt|y0, ..., yt−1, X)

After sampling a sequence Y from Pθ, Y is then transformed into feasible routes using the
Split algorithm with regard to the vehicle’s capacity constraint. The Split algorithm can be viewed
as an oracle that evaluates the goodness of a giant tour by returning the associated solution’s
total travelled distance. This evaluation makes it possible to train our deep neural network via
reinforcement learning. We define the loss as the expected tour lengths of the Y sequences evaluated
by the Split algorithm, i.e. L(θ) = EX∼D,Y∼Pθ(.|X)

[
Split(Y,X)

]
. The objective is to find the best

parameters θ that will output good quality sequences Y that would result on short tour lengths.
For this, we rely on AdamW as a gradient descent optimizer during training. In order to compute
the gradient of the loss, we use REINFORCE with Rollout baseline [5]:

∇θL(θ) = EX∼D,Y∼Pθ(.|X)

[(
Split(Y,X)− b(X)

)
∇θ logPθ(Y |X)

]

The gradient ∇θL(θ) is approximated using Monte Carlo sampling over a batch of B i.i.d CVRP
instances as follows:

∇θL(θ) ≈
1

B

B∑

i=1

[(
Split(Yi, Xi)− b(Xi)

)
∇θ logPθ(Yi|Xi)

]

The baseline b(X) is used to reduce the gradient variance, leading to an acceleration of the
learning process. We use the greedy rollout baseline b(X) = Split(Y BL, X) which is an evaluation
of the optimal Split of the giant tour Y BL resulting from a copy of the learning neural network
with parameters θBL that acts greedily, i.e. it chooses the next client with the highest probability
of appearance at each time step. This baseline proved to be more efficient than actor-critic or RE-
INFORCE with an exponential moving average baseline [5]. During validation, if the performance
of θ is significantly better than that of θBL according to a t-test (α = 5%), the baseline is updated
with the parameters of Pθ, i.e. θ

BL is set to θ.

4.1 Instance features

For each instance X, we define the nodes and edges features as follows:
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Algorithm 1.1: NOFSS REINFORCE with Rollout Baseline

1 Inputs: θ, Number of epochs E, batch size B, number of instances K, number of clients n,
vehicle capacity C, t-test threshold α

2 T ← K

B
3 θBL ← θ
4 for e← 1 to E do // train for E epochs

5 for t← 1 to T do // loop over the T instance batches

// Get a batch of B CVRP instances with n clients

6 Xi ← getInstance(n, C), ∀i ∈ {1, ..., B}
7

// Sample a giant tour according to the learning policy Pθ

8 Yi ← SampleGiantTour(Xi, Pθ), ∀i ∈ {1, ..., B}
9

// Generate a giant tour greedily according to the policy PθBL

10 Y BL
i ← GreedyGiantTour(Xi, PθBL), ∀i ∈ {1, ..., B}

11

// Evaluate giant tours total travel cost

12 Li ← Split(Xi, Yi, C) ∀i ∈ {1, ..., B}
13 LBL

i ← Split(Xi, Y
BL
i , C) ∀i ∈ {1, ..., B}

14

// Compute the loss and update the neural network parameters

15 ∇θL ← 1

B

∑B
i=1(Li − LBL

i )∇θ logPθ(Yi|Xi)

16 θ ← AdamW (θ,∇θL)

17 end
18 if t-test(Pθ, PθBL) < α then
19 θBL ← θ
20 end

21 end

Node features. Each node u ∈ V is represented as a quadruplet (xu, yu, d̂u, au) where (xu, yu)

are the node coordinates sampled from a uniform distribution U([0, 1]× [0, 1]), d̂u = du/C ∈ [0, 1]
is the normalized demand and au = atan((yu − y0)/(xu − x0)) ∈] − π/2, π/2[ is the polar angle
between the node u and the depot node 0.

Edge features. For each edge (u, v) ∈ E, we define the edge features as the Euclidean distance
between the nodes u and v (i.e. d(u, v) := ∥u−v∥,∀(u, v) ∈ E). The distance between two nodes in
the instance is an interesting feature in the case of vehicle routing problems, since it is information
that characterizes the problem well, and it appears in the objective function.

4.2 NOFSS Encoding-Decoding architectures

The NOFSS approach is agnostic to the choice of the encoding and decoding model architectures.
Thus, we propose to train various encoder-decoder models that rely on different graph neural
networks (GNNs) and a GRU recurrent cell for decoding. The decoded sequence is passed to the
Split algorithm in order to retrieve a candidate solution for the instance (Figure 2).

Encoding. We experiment three GNN Encoders for our approach: GCN (a spectral GNN), GAT
(a spatial GNN) and TransformerConv (a spatial GNN) [21]. Each encoder have K similar blocks.

The GNN outputs an embedding for each node (clients and depot) h
(K)
u ∈ Rd, ∀u ∈ V and a graph

representation computed using an average pooling h̄ = 1/|V |
∑

u∈V

h(K)
u . Finally, to distinguish

the clients embeddings from the depot embedding h
(K)
0 , we pass them into a feedforward layer

hu = Wc · h(K)
u + bc,∀u ∈ V − {0}, with Wc ∈ Rd×d, bc ∈ Rd being respectively the weights and

the bias of the layer.

244



NOFSS for the CVRP 7

Fig. 2. Our proposed NOFSS model for solving CVRP instances.

Neighborhood definition. As highlighted in Section 2, we can define a CVRP instance as
a complete graph. We define the neighborhood N (u) of a client node u ∈ V − {0} as the κ
nearest nodes in terms of Euclidean distance and the depot 0, since it is important for the client’s
representation to be aware of the depot’s existence (i.e. N (u) = {v1, v2, ..., vκ ∈ V ; ∥v1 − u∥ ≤
∥v2 − u∥ ≤ ... ≤ ∥vκ − u∥} ∪ {0}). For the depot, we consider that it is connected to every client.
An example of an instance neighborhood definition is depicted in Figure 3. The central node (red
square) represents the depot, while the other nodes (blue circles) represent the clients. An edge
exists between nodes u and v if v ∈ N (u). The number of nearest neighbors κ is determined
per instance. We set it to be the average number of clients per route as if they were uniformly

distributed on the routes, i.e. κ =
n

m
with n being the number of clients and m being the lower

bound of the number of routes. m is determined as the sum of all clients’ demands divided by

the vehicle’s capacity rounded to the next integer (m =

⌈∑n
i=1 di
C

⌉
). The advantage of such a

definition of κ is that it takes into account the characteristics of the instance in terms of the
number of clients, their demands, and the capacity of the vehicles instead of selecting an arbitrary
number of neighbors.

Fig. 3. CVRP instance with relationships between neighboring nodes (central square node is the depot).

Decoding. Since we are decoding a sequence of clients’ order, we use a GRU recurrent cell [22].
GRU is relevant as it enables capturing the sequence representation while taking into account the
order of its elements. It takes as input the previously selected client representation at step t − 1

concatenated with the depot representation h
(K)
0 and incorporates it in the global representation
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of the partial giant tour. At t = 0, we only use the depot representation h
(K)
0 as input to the GRU.

h
(s)
t =

{
GRU(h

(K)
0 ), t = 0

GRU([hyt−1
;h

(K)
0 ]), t > 0

The graph embedding ĥ, the depot embedding h
(K)
0 and the sequence embedding h

(s)
t are then

concatenated together to form a context vector hc ∈ R3d. The context vector is then passed to a
feedforward layer made of two linear layers with ReLU activation function in between to output a
query vector qt ∈ Rd i.e. q =W2 ·ReLU(W1 ·hc+b1)+b2 withW2 ∈ Rd×3d,W2 ∈ Rd×d, b1, b2 ∈ Rd

being the parameters of the feedforward layer.
To compute the probability of selecting the next client pθ(yt|y0, ..., yt−1, X), we compute atten-

tion scores su (∀u ∈ V − {0}) using a scaled dot-product with a masking mechanism in order to
avoid selecting the same client twice. These scores are then clipped within [−10, 10] using tanh [5].

su =




c · tanh

(
qth

⊤
u√
d

)
, u ̸= yt′ t′ < t, c = 10

−∞ otherwise

The attention scores are converted into a probability distribution using the softmax function
pi = pθ(yt = i|y0, ..., yt−1, X) = softmax(si) By setting the value of the attention score to −∞,
we can perform the masking of already visited clients. Thus, when passed to the softmax function,
its associated probability will be 0.

The Split procedure. The algorithm works on the basis of the giant tour output by the neural
network augmented with the depot, i.e Y = (y0, y1, ..., yn) with y0 = 0 being the depot. Using the
giant tour, we define an auxiliary graph H(V H , EH) with |V H | = n+1. The nodes in V H indicate
the depot (either for return or departure). The edge set indicates all possible sub-sequences that
starts from yi to yj (yi, yi+1, ..., yj) that do not transgress the vehicle’s capacity constraint. We

formulate it as follows: EH = {(i, j) ∈ V H × V H ; i < j,
∑j

k=i+1 dyk
≤ C}. The edges are

weighted as follows: for an edge (i, j) ∈ EH we associate the total travelled distance starting from
the depot to the client yi+1, visiting the tour (yi+1, ..., yj) and going back to the depot from yj :

DH = {dij = dist(0, yi+1) +

j−1∑

k=i+1
j−i>1

dist(yk, yk+1) + dist(yj , 0), ∀(i, j) ∈ EH}

This gives us a direct acyclic graph where we solve a shortest path problem using Bellman’s
algorithm. The associated shortest path cost represents the best solution length (total travelled
distance) for the CVRP instance with regard to the given giant tour.

5 Experiments

Data generation. We follow the data generation protocol of Nazari et al. [6] to consider 3 types
of CVRP instances with number of clients n = 20, 50 and 100. For each problem size, we have
generated 100k instances for training, and two sets of 10k instances for validation and test. Clients
and depot locations are generated from a uniform distribution U({[0, 1] × [0, 1]}). The clients’
demands are also uniformly drawn from the interval [1, 9]. Vehicles’ capacities are set to 30, 40 and
50 respectively for n = 20, 50, 100.

Hyperparameters. We use an embedding dimension d = 128 and a uniform parameter initial-
ization for our deep neural networks U(−1/

√
d, 1/

√
d) and set the learning rate to η = 10−3. The

models are trained with a time limit of 100 hours and batch size B = 128 on a single Nvidia V100
GPU with 16 GB of VRAM. For each encoder type, we use K = 3 GNN blocks. Implementations
use PyTorch and PyTorch Geometric for graph neural networks [23] (Python), while the Split
algorithm is implemented in C.
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Baselines. We use HGS4 [16] as baseline as it is one of the state of the art metaheuristics for
the CVRP. We also use classical CVRP heuristics5: (i) RFCS [7] as a two-step order-first split-
second heuristic, (ii) Sweep [12] as a two-step cluster-first route-second approach, and (iii) Nearest
Neighbor heuristic as a single-step construction approach [24]. We also trained the model with
TransformerConv encoder in an end-to-end manner for depot and clients choice (Full-learning).
We first note that NOFSS models are faster to train, completing E = 1000 of learning epochs
in the 100 hours time budget, while the Full-learning models perform 1000, 500 and 200 training
epochs for instance sizes of 20, 50 and 100 respectively. For the exploitation of the learned policies,
we use a greedy decoding which considers the highest probability at each decoding step and a sam-
pling strategy which samples 1280 candidate solutions for each test instance from the probability
distributions given by the models. Table 1 reports the results of each approach on the test speci-
fying: average solution lengths (obj.), the average gap (in percentage) to the best average solution
lengths and the running time (in seconds) to output a candidate solution for a single instance.

Table 1. NOFSS vs. other algorithms. FL for Full-Learning; exploitation, greedy (G), sampling (S).

Method n = 20 n = 50 n = 100
obj. gap (%) time (s) obj. gap (%) time (s) obj. gap (%) time (s)

HGS 6.13 0.00 0.003 10.34 0.00 0.09 15.57 0.00 0.69

RFCS 6.30 2.76 0.02 10.90 5.39 0.57 16.62 6.73 7.53
Sweep 7.55 23.16 0.01 15.60 50.93 0.06 28.56 83.37 0.23
Nearest neighbor 7.39 20.57 0.0004 12.63 22.19 0.001 18.95 21.68 0.01

NOFSS-GCN (G) 6.83 11.41 0.0008 12.31 19.05 0.003 19.41 24.66 0.007
NOFSS-GAT (G) 6.59 7.50 0.006 11.74 13.53 0.02 18.34 17.80 0.05
NOFSS-Transformer (G) 6.50 6.03 0.006 11.57 11.89 0.02 18.13 16.44 0.06
FL-Transformer (G) 6.49 5.87 0.006 11.34 9.67 0.02 17.69 13.61 0.06

NOFSS-Transformer (S) 6.24 1.79 1.37 11.03 6.67 1.56 17.45 12.07 2.43
FL-Transformer (S) 6.18 0.81 2.09 10.79 4.35 2.35 17.32 11.23 8.29

5.1 Comparison with a Full-learning setting

Figure 4 presents the evolution of the average solution length per epoch during training and vali-
dation on CVRP instances with 20 clients (left) and 50 clients (right). During training, candidate
solutions are sampled from the model and their total lengths are averaged over the training set.
Let us note that the models’ parameters are updated each time a batch is processed via gradient
descent, thus the performance of the models changes every batch during training, while validation
is performed using the model resulting from the processing of the last batch in the training set,
which is theoretically the best model achieved at the end of the epoch. Also, in validation, we use
a greedy decoding instead of sampling. The evolution of the average solution lengths shows that
the NOFSS model is able to learn an implicit policy for solving the CVRP by learning to output
an indirect representation of the solution. On instances with 20 clients, we can observe that during
training, the NOFSS model achieves better average solution lengths than the Full-learning model.
On validation, we observe the same trend as in training, but starting from the 600th epoch, the
Full-learning model slightly outperforms the NOFSS model. The equivalent performance of the two
models is confirmed on the test set with average solution lengths of 6.50 and 6.49 on greedy decod-
ing for NOFSS and Full-learning respectively with similar execution times. On sampling decoding,
similar performances are observed, with 0.9 % difference in performance between the two models,
but with an advantage in execution time in favor of NOFSS. On CVRP with 50 clients, we observe
that NOFSS has a better jump start performance on training and a better final performance for the
Full-learning model. We observe 2 % difference in performance for greedy and sampling decoding
on the test set. We also note similar sampling times for the two types of models in greedy decoding,
while NOFSS being 52 %, 50% and 241% faster in sampling respectively for n = 20, 50 and 100.

4 https://github.com/vidalt/HGS-CVRP
5 https://github.com/yorak/VeRyPy
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Fig. 4. Learning curves in training and validation for Full-learning (blue) and NOFSS models (orange) on
CVRP instances with 20 (CVRP20) and 50 clients (CVRP50); lower is better.

5.2 Comparison to handcrafted heuristics

When compared to handcrafted heuristics, we can observe from Table 1 that either with greedy
or sampling exploitation, NOFSS models outperform the Sweep and Nearest neighbor algorithms.
NOFSS model seems to output better solution lengths, on average, than RFCS on CVRP with
20 clients when using the sampling strategy but seems to fail scaling to CVRP with 50 and 100
clients. Let us note that while RFCS and NOFSS belong to the same type of two-step strategy,
there is a difference in the two approaches in that RFCS explicitly solves a Traveling Salesman
Problem, while NOFSS directly evaluates the giant tour using the Split algorithm. The difference
in average solution lengths may suggest that NOFSS learned policy is different from a policy that
learns to solve a Traveling Salesman Problem.

5.3 Influence of the type of encoder

We investigate the influence of the choice of GNN encoder on models’ performance. Figure 5
shows the evolution of the average solutions lengths per epoch in training and validation phases
for the 3 types of GNN encoders: GCN, GAT and TransformerConv on CVRP with 20 and 50
clients. We observe the same trends for both training and validation phases, with TransformerConv
having the best convergence, followed by GAT encoder and finally by GCN encoder. The instances’
representation plays an important role in the resolution process, because a good representation
leads to the exploitation of meaningful features and, thus, gives a better solution. The choice of
the encoder seems to be a critical part of the model’s architecture. It appears from these results that
spatial GNNs better perform than spectral GNNs in our evaluation setting. Exploiting the graph
topology in the spatial domain seems to benefit more in the context of vehicle routing problems
than exploiting the graph structure in the spectral domain. While TransformerConv and GAT are
both spatial GNNs, it seems that the way they exploit the node and edges information has an
impact on the overall performance of the models.

5.4 On models generalization

We propose to study the generalization of the models trained on a set of instances with a specific
size to instances of different size. For this, we evaluate the different test sets on instances of different
sizes. For example, we evaluate the NOFSS Transformer model trained on CVRP with 20 clients
instances (Transformer-20) on instances with 20, 50 and 100 clients. Table 2 sums up our results.
We report the average solution lengths for both greedy and sampling exploitation strategies. For
greedy decoding, we report the results for the models trained on the different instance sizes while
for sampling, we focus on the model trained on instances sizes which seems more promising based
on our findings on the greedy decoding. We observe that for the Transformer-20, the NOFSS model

248



NOFSS for the CVRP 11

Fig. 5. Comparison of Graph Neural Network encoders on models’ performance (training and validation).

has a better generalization property than the Full-learning model, with performance similar for
n = 20 and n = 100 and better for n = 50. Since training models on instances with 20 clients is
faster, it is relevant to identify that the NOFSS model is a better choice.

For Transformer-50 and Transformer-100, it appears that, for n = 20 NOFSS models have
better performances than their Full-learning counterparts while staying competitive for n = 50
and n = 100. An interesting result observed on Transformer-50 is its good generalization to CVRP
instances with 100 clients, as it appears that it achieves better performance than the models trained
on instances with 100 clients. This may suggest that relevant invariants that are beyond the instance
size are learned while training on instances with 50 clients. We push further our investigations on
Transformer-50 by analyzing its performance with a sampling exploitation strategy. While for the
instances with 20 clients, the models stay competitive with the ones trained on that size, they
achieve the best performances on the sets with instances with 50 and 100 clients. Transformer-50
appears to be a good trade-off between learning speed (it is faster to train than Transformer-100)
and performance.

Table 2. Comparison of average solution lengths achieved by the NOFSS and Full-learning models on
different instance sizes of the test set.

Trained model NOFSS (G) Full-learning (G)
20 50 100 20 50 100

Transformer-20 6.50 11.62 18.34 6.49 12.01 18.33
Transformer-50 6.64 11.57 17.97 6.76 11.34 17.52
Transformer-100 6.94 11.79 18.13 6.98 11.65 17.69

NOFSS (S) Full-learning (S)
20 50 100 20 50 100

Transformer-50 6.31 11.03 17.40 6.25 10.79 17.22

6 Conclusion

In this work, we proposed NOFSS, a two-step algorithm hybridizing a deep neural network model
and an exact tour splitting procedure for the Capacitated Vehicle Routing Problem. To the best of
our knowledge, this is the first model that proposes a hybridization between a deep neural network
and a dynamic programming algorithm to successfully learn an implicit policy based on giant tour
generation to solve the CVRP. We conducted extensive experiments on the proposed models with
various Graph Neural Network encoders and compared them against classic CVRP heuristics and
an end-to-end Full-learning model. Our results show that NOFSS is very competitive, even if it
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currently does not surpass end-to-end full-learning approaches. NOFSS is however faster than end-
to-end approaches in both training and evaluation. It also shows good generalization properties
when trained on instances with a specific size and applied to solve instances of different sizes. The
NOFSS model is easier to implement than an end-to-end learning-based policy and does not rely
on sophisticated handcrafted search strategies to find good quality solutions.

Future work should investigate more on the generalization of the method to instances of bigger
sizes. Also, while we tested only greedy and sampling strategies for exploiting the trained models,
other relevant strategies may be interesting such as beam search, or using bigger sample sizes than
the one we used since NOFSS has a faster execution time. The solution given by NOFSS can
also be a good warm start for further improvement by local search algorithms. Finally, since our
approach is generic, it would be interesting to evaluate it on other problems, such as the Vehicle
Routing Problem with Time Windows.
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1 Introduction and Motivation

We are motivated by the works [8–10], whereby the authors propose to use machine learning and
mathematical optimization to decide how to configure a given algorithm. The practical context that
motivated the works is the following: we are given a problem Π to be solved with an algorithm A.
Different instances of the problem are solved multiple times a day. The instances differ from one
another only with respect to a subset of the input data. The performance p of algorithm A depends
on the specific instance, which might be from easy to hard to solve, based on how A is configured.
The configuration parameters are represented by the vector c and the possible configurations are
contained in the set CA, thus c ∈ CA. The vector π ∈ Π describes the features characterizing a
given problem instance. Formally, we wish to find a method that solves the following problem:

min
c∈CA

p̄(π, c) ,

where π is given and p̄ is an approximation of an algorithm performance function p(π, c), e.g., the
CPU time needed by the algorithm to terminate. Note that neither function p nor function p̄ are
known.

The methodology proposed in [8–10] has the following characteristics: i) it is instance-based,
i.e., the optimal algorithmic configuration depends on the instance features π; ii) it is composed of
two phases. In the first phase, it deploys a machine learning paradigm to learn the approximation
function p̄(π, c) from historical data. In Iommazzo [8], Support Vector Regression (SVR), Decision
Trees, and Logistic Regression are used to this end. The second phase is the operational one: upon
arrival of a new problem instance π′, the Configuration Space Search Problem (CSSP), asking to
optimize p̄ over the set CA, is solved to determine the best parameter configuration for running
the algorithm A on π′. When SVR is used in the first phase, the CSSP can be written as follows:

min
c̄∈CA

∑
i∈S α

∗
i exp−γ‖(πi,ci)−(π′,c̄)‖22 , (1)

where S contains the training set indices and α∗i , πi, ci, γ are found by training. Problem (1) is a
nonconvex Mixed Integer Non Linear Programming (MINLP) problem. In [8] the author uses a
convex MINLP solver, Bonmin [4], to solve it. Note that Bonmin can only find heuristic solutions
for nonconvex MINLPs.

This work presents alternative methods for solving the CSSP, which are capable of achieving a
better compromise between CPU time and solution quality.

2 Preliminary Computational Results

We test several commercial or open-source MINLP solvers to treat problem (1). In particular, we
compared the performances of Baron [12, 11] and Scip [2, 3], both of which aim to find a global
optimum of nonconvex MINLPs, with those of Bonmin and Knitro [1], which provide a heuristic
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solution of nonconvex MINLPs such as (1). Moreover, we run the SC-MINLP algorithm, introduced
in [5, 6] and whose faster implementation is described in [7]. SC-MINLP is an iterative algorithm
which, at each iteration, solves a lower-bounding and an upper-bounding problem. When we reach
an iteration in which the two bounds coincides, then we obtained a global solution of the MINLP
at hand. Notably, since SC-MINLP deals with separable nonconvexities, we must first reformulate
problem (1) so that it falls in this problem class. Namely,

min
∑
i∈S wi (2)

wi ≥ α∗i exp−γ(
∑

k∈K(πik−π̄k)2+zi) ∀i ∈ S (3)

zi =
∑

j∈J
(cij − c̄j)2 ∀i ∈ S (4)

c̄ ∈ CA. (5)

The two sets of nonlinear constraints, namely (3) and (4), contain univariate nonlinear functions;
their variables are zij and c̄j . Note that when c̄j is binary, constraints (4) can be written linearly
as c̄2j = c̄j .

To test the different methods mentioned above, we selected 187 hard instances from [8]. Further,
since we would like the CSSP to be solved quickly, we set a time limit of 500 seconds to run the
solvers.

In Tables 1 and 2, we present a summary of the preliminary results obtained. Firstly, we remark
that Bonmin is unable to find a feasible solution for 6 instances, so all the statistics concerning this
solver are computed over 181 instances only. Secondly, we point out that we decided not to show
the Baron’s results in the tables. In fact, the solver stopped and declared the problem infeasible for
175 instances, and it reached the prescribed time limit 3 times; only on the remaining 9 instances
it converged to a global optimum within the assigned time limit.

In Table 1, we examine the quality of the best primal (feasible) solutions found by the considered
solvers, measured by the accompanying upper bounds. Notably, each table entry reports the number
of times the solver in the row wins against the solver in the column, i.e., manages to provide a
tighter (namely, lower) upper bound. Note that, when the values contained in two symmetric
entries do not sum up to the total number of instances is because of the ties.

Bonmin Knitro Scip SC-MINLP

Bonmin - 15/181 121/181 169/181
Knitro 63/181 - 145/187 184/187

Scip 64/181 39/187 - 170/187
SC-MINLP 18/181 3/187 17/187 -

Table 1. Upper Bounds: winners

The clear winner is Knitro, obtaining 184 wins on SC-MINLP, 63 wins on Bonmin and 145
wins on Scip. Bonmin ranks second, with 15 wins on Knitro, 121 wins on Scip, and 169 wins
on SC-MINLP. This is not surprising, as Knitro and Bonmin are heuristic solvers for non-convex
MINLPs and are hence designed to find good feasible solutions, whereas exact solvers such as Scip
seek to find certified global optima. We observe that Bonmin and Knitro find the same solution
109 times, Bonmin and Scip twice, Knitro and Scip 3 times.

Furthermore, we remark that the CPU time depends on the different approaches to the problem.
In fact, Bonmin reports the shortest average solution time (11.54 seconds) and Knitro is the
second fastest solver (16.82 seconds, on average), while Scip always hits the allotted time limit
(500 seconds), and SC-MINLP takes 295 seconds, on average, to solve the instances.

In Table 2, we show the lower bounds achieved by the solvers. We only consider Scip and SC-
MINLP, as Baron fails most of the time. Bonmin and Knitro are not considered because they are
heuristic methods for nonconvex MINLPs, thus they cannot provide a valid lower bound.

From the table, we gather that, on average, the lower bounds found by Scip are tighter (higher)
than the ones provided by SC-MINLP. However, Scip always hits the time limit (# t.l. in the
table), while SC-MINLP only does so on 42 instances (we recall that the average CPU time was
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Scip SC-MINLP

Average -32.028 -34.074
# t.l. 187 42

best LB 160 27
Table 2. Lower Bounds

500 against 295 seconds). This happens because, in these preliminary computational results, we
run SC-MINLP only for the first iteration, for lack of time; thus, the relaxation used to find a lower
bound is not refined.

The row “best LB” reports the number of times the solver provides a better lower bound than
the other solver in the table. Scip outperforms SC-MINLP 160 times over 187. Since there is no
tie, SC-MINLP wins 27 times; out of these, SC-MINLP hits the time limit 13 times. Moreover,
whenever SC-MINLP manages to find a better lower bound than Scip, its CPU time exceeds
200 seconds. Thus, we argue that there is room for improvement: refining the relaxation used by
SC-MINLP to find the lower bound could largely improve the results of Table 2.

We conclude by observing that, in the specific case of CSSP for SVR, the problem could be
solved by plenty of other methods. However, we considered only MINLP solvers because they are
general-purpose algorithmic frameworks, that could be deployed to solve CSSPs arising from the
use of several other machine learning paradigms in the first phase of the method proposed in [8–10].

3 Conclusions

We performed a computational study focusing on the Configuration Space Search Problem intro-
duced in [8–10]. The problem is a nonconvex MINLP. Exact and heuristic solvers were tested,
each showing advantages and drawbacks. In particular, heuristics are fast in finding good quality
solutions, while exact methods provide lower bounds. As perspectives, we think that hybrid and
tailored methods would be interesting to develop for speeding up the solution process.
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2. Bestuzheva, K., Mathieu Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen,
J., et al. The SCIP Optimization Suite 8.0. Technical report, Optimization Online, December 2021.
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Abstract. Chemical reaction optimization is a challenging field for the
industry. Its purpose is to experimentally find reaction parameters (e.g.
temperature, concentration, pressure) that maximize or minimize a set
of objectives (e.g. yield or selectivity of the chemical reaction). These
experiments are often expensive and long (up to several days), making
the use of modern optimization methods more and more attractive for
chemistry scientists.
Recently, Bayesian optimization has been showed to outperform human
decision-making for the optimization of chemical reactions [14]. It is well-
suited for chemical reaction optimization problems, for which the evalu-
ation is expensive and noisy.
In this paper we address the problem of chemical reaction optimization
with continuous and categorical variables. The presence of categorical
variables in an optimization problem often increases its difficulty and
decreases the performances of the optimization algorithms.
We propose a Bayesian optimization method with the use of a covariance
function initially proposed by Ru et al. in the COCABO method [12]
and specifically designed for categorical and continuous variables. Also,
we experimentally compare different methods to optimize the acquisition
function. We establish their performances based on the optimization of
two simulated chemical reactions involving categorical and continuous
reaction parameters.
We show that the proposed Bayesian optimization algorithm finds op-
timal reaction parameters in fewer experiments than state of the art
algorithms on our simulations.

Keywords: Mixed bayesian optimization · chemical reaction optimiza-
tion · categorical variables

1 Introduction

Every chemical reaction is optimized before being industrialized. The goal is to
find, by carrying out experiments, input parameters (e.g. temperature, pressure,
residence time, etc.) that yield optimal values for a set of objectives (e.g maximize
the yield, minimize the production of an impurity, etc.).

The pursuit of high-performance optimization methods is driven by the high
cost of chemical experiments. The performances of optimization methods applied
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to chemical reactions are measured against the quality of the solution (i.e. how
close the solution is to the optimization objectives) and how many experiments
are needed to find this solution.

One-Variable-At-a-Time (OVAT) and Design of Experiments (DoE) [1, 16]
methods are the most used approaches to optimize chemical reactions. The
OVAT method iterates by performing experiments and modifying only one pa-
rameter at a time. DoE methods consist in planning a series of experiments
following a design matrix, running these experiments and building a statistical
model (usually linear or polynomial) with the resulting dataset. An optimum is
then computed from the model. OVAT and DoE methods tend to need a large
number of experiments to be effective. In addition, OVAT can be very slow (be-
cause only one variable is changed at a time) and can get stuck in local optima.
Simplex-based methods are also sometimes used to optimize chemical reactions
[9, 19]. They consists of building a simplex in the search space, then evaluating
the objective function at each of the vertices of the simplex and iteratively dis-
placing one vertex at a time following heuristics. Simplex-based methods tend
to be easily stuck in local optima [18].

Zhou et al. [21] proposed a deep reinforcement learning (DRL) based method
to optimize chemical reactions. The authors combined DRL and pre-training
to be able to start working with very small amounts of data. This leads to
satisfactory results on problems containing only continuous variables but hasn’t
been tested with categorical variables (without descriptors).

Bayesian optimization (BO) is a powerful approach to optimize problems
for which the evaluations are expensive and noisy. It has shown a variety of
successful applications [13]. BO concepts are described in figure 1. First, an ini-
tialisation is done with a small number of experiments. Then, a surrogate model
(e.g. Gaussian process) is trained using these experiments. An acquisition func-
tion, that balances the predicted improvement (exploitation strategy) and the
uncertainty of the predictions (exploration strategy), is applied to the model.
An optimization algorithm is applied to find the maximum of this acquisition
function. The set of parameters that gives this maximal value for the acquisi-
tion function determines the next experiment (chemical reaction) to run. This
experiment is run, its result is added to the dataset, and the algorithm starts
a new iteration. The algorithm stops when the objectives are attained or when
the experiments budget is spent.

Categorical variables are often present in the optimization of chemical re-
actions [11]. We can cite as an example the choice of a catalyst or additives,
the choice of the solvent or the order of addition of the reactants. Categorical
variables have two important particularities. The first one is the non-continuity
constraint, since categorical variables are not defined on a continuous space. The
second one is the non-ordinality constraint: they can only be compared with the
equality operator. For example, with a categorical variable representing a choice
between three solvents water, ethanol, toluene asserting that water > toluene
is meaningless.
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Chemical reaction Surrogate model 

Acquisition function 

New data

Suggestion Predictions

Fig. 1: Simplified Bayesian optimization algorithm applied to chemical reactions.

Mixed-variable optimization can be handled with one-hot encoding: a cat-
egorical variable with n categories is encoded as a vector of n corresponding
bits, with all bits being equal to 0 except the bit corresponding to the selected
category, that is equal to 1. However, in the BO algorithm, treating one-hot di-
mensions as continuous without any supplementary treatment misleads the ac-
quisition function optimizer and often results in a sub-optimal solution. Indeed,
the experiment proposed by the acquisition function optimizer is a real-valued
vector and has to be decoded to the closest category. Hence, most of the time,
there will be a gap between the experiment suggested by the acquisition func-
tion optimizer and the experiment that will actually be performed, leading to a
mediocre optimization performance.

The work presented by Garrido-Merchán et al. [3] brings an improvement to
the basic one-hot encoding approach. During the optimization of the acquisition
function, real-valued encoded vectors are transformed to the nearest one-hot
vectors before being used as inputs of the model. It follows that the acquisition
function optimizer considers real-valued vectors as having the same acquisition
values as the associated transformed vectors. Thus, the acquisition optimizer
suggests an experiment that can be performed as is, which ensures the conver-
gence to optimal solutions.

Häse et al. [4] have developed an augmented Bayesian optimization algo-
rithm called Gryffin that uses a Bayesian neural network as surrogate model.
It estimates kernel densities, based on previously evaluated experiments, that
are used to approximate the objective function. Griffyn is able to use expert
knowledge (descriptors) to guide the optimization, which drastically improves
the performances of their method. Its ”naive” version doesn’t use descriptors,
which enabled us to use it in our benchmarks.

COCABO [12] is a Bayesian optimization method designed for mixed-variable
optimization. At each iteration, COCABO first selects categories with a multi-
armed bandit algorithm and then separately optimizes the numerical variables
(after modelling them using a mixed covariance function).
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Random forests inherently handle categorical variables and can be used as
surrogate model in the Bayesian optimization algorithm [5]. A ready-to-use im-
plementation of this algorithm is provided in a package called SMAC [7].

In this study, we aim at improving the performances (i.e. reducing the num-
ber of experiments necessary to reach an optimum) of the Bayesian optimization
method for the optimization of chemical reactions with continuous and categor-
ical variables. Our approach is based on Gaussian processes as surrogate models
with the COCABO covariance function [12]. We propose different techniques
for the optimization of the acquisition function. Next, we compare the different
acquisition function optimizer on the optimization of simulated chemical reac-
tions. And finally, we compare our optimization algorithm (using the COCABO
covariance function and the highest-performing acquisition function optimizer)
with other state-of-the-art algorithms.

2 Problem definition

Our work is applied to problems with a form given by:

Minimize f(z) with the smallest possible number of evaluations (1)

where :

– z = (x,h)

– x = x0, .., xn and xi ∈ [Ai, Bi] with Ai, Bi ∈ R
– h = h0, ..., hn and hi ∈ Ci with Ci denotes the categorical space of the ith

categorical variable.

This work is restricted to single objective optimization. Moreover, only contin-
uous and categorical variables are used.

The ”No-Free Lunch Theorem” [17] stipulates that the performances of ev-
ery optimization methods are equal when averaged on all possible problems. It
implies that in order to increase the performances on a specific optimization
problem (e.g. chemical reaction optimization), we must evaluate the optimiza-
tion method on similar problems without any regards on the performances of
unrelated ones. The underlying functions of chemical reactions have some par-
ticularities: they are smooth and have few local optima [8, 15]. So, in order to be
specific to the chemical reaction optimization problem, we measure the perfor-
mances of our approach using chemical reaction simulators. We have built these
chemical reaction simulators by training machine learning models with publicly
available chemical reaction data (see table 1). This benchmarking strategy was
initially introduced by Felton et al. [2] for measuring performances on chemical
reactions with continuous and categorical variables. It allows us to establish opti-
mization performances on chemical reactions without having to run experiments
in a chemistry lab.
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Table 1: Details of the data used to train the simulators

Reaction type Number of experiments Source

Pd-catalysed direct arylation 1728 [14]

Suzuki-Miyaura cross-coupling 4 cases of 96 [11, 2]

3 Propositions

In a first part, we describe the surrogate model including the COCABO kernel
and its hyperparameters. In a second part, we present different approaches for
the optimization of the acquisition function.

3.1 Gaussian process kernel

We use Gaussian processes (GP) to approximate the underlying functions of
chemical reactions. It is the most commonly used model since it can inher-
ently predict both a value and an associated uncertainty. Gaussian processes are
mainly defined by their covariance function. Since the underlying functions of
chemical reactions are smooth, we use a smooth covariance function, Matérn5/2
[10], for the continuous dimensions.

The smoothness of the GP on continuous variables is kept with the use of
the one-hot encoding. However, the Euclidian distance used for the calculation
of the Matérn5/2 kernel is based on all dimensions (continuous and encoded). We
believe that, in order to catpure complex relationships between categorical and
continuous variables, the covariance function should use the Euclidian distance
only on continuous variables and incorporate categorical knowledge later in its
calculation. The COCABO method [12] uses such a covariance function (see
equation 2). It combines two sub-functions: one for continuous variables, Kcont,
and one for categorical variables, Kcat.

K(z, z′) = (1− λ)× (Kcont(x,x
′)×Kcat(h,h

′))
+ λ× (Kcont(x,x

′) +Kcat(h,h
′))

(2)

where :

– z = (x,h)
– x is the set of continuous variables
– h is the set of categorical variables

Kcont is the Matérn5/2 function. It is a standard covariance function for
smooth Gaussian processes regressions with continuous inputs. Kcat, the kernel
for categorical inputs (see equation 3), measures similarity between categorical
vectors with the equality operator (which is the only permitted operation for
categorical variables).
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Kcat(h,h
′) = σ × 1

D

D∑

1

α(hd, h
′
d) (3)

where:

– α(a, b) equals 1 if a = b and 0 if a ̸= b
– D is the number of categorical variables
– σ is the variance hyperparameter.

The proposition made by Ru et al. in COCABO [12] revolves around the
hyperparameter λ, which is a trade-off between the two terms of the equation
2: the sum and the product of Kcont and Kcat. Both of these terms capture
different relationships between continuous and categorical variables. The sum
of the two sub-kernels produces a learning of a single trend on the continuous
variables and shift this trend depending on the categories whereas the product is
able to produce a learning of complex relationships with highly different trends
depending on the categories. The sum is especially necessary when the amount
of training data is low (beginning of the optimization) because the product is
able to capture knowledge only if the evaluations have categories in common.
For example, if two evaluations have the same continuous features but different
categorical ones, the product will be equal to 0 which prevent the model to learn
even on continuous variables. Nonetheless, the product is essential because, as
the optimization goes on, more evaluations are added to the training dataset and
a single trend with a simple shift will not be sufficient to model the complexity
offered by the data. In other words the sum alone will not be able to capture all
the knowledge available to guide the optimization. With the hyperparameter λ,
the authors ensure that the relationships that can be captured either by the sum
or by the product are taken into account into the covariance K(z, z′), because λ
is tuned during the fitting of the Gaussian process.

In order to avoid underfitting/overfitting the data while training the Gaus-
sian process (tuning its hyperparameters to minimize its negative log marginal
likelihood [10]), we confined hyperparameter values within a range. σK , σKcont

and σKcat
were bounded in [10−2, 20] while the lengthscale parameter of Kcont

and λ were respectively bounded in [10−2, 20] and [0.1, 0.9]. We used the L-BFGS
optimizer to tune the GP hyperparameters.

3.2 Acquisition function optimization

We chose to use the Expected Improvement (EI) acquisition function because
it has shown good results on diverse applications and has a strong theoretical
support [20]. The equation of Expected Improvement is given by:

EI(x) = E[max(f(x)− f(x+), 0)] (4)

with f(x+) the value of the evaluation that have yielded the best result so far.
The analytical form of EI is the following:

EI(x) =

{
σ(x)ZΦ(Z) + σ(x)ϕ(Z) if σ(x) ̸= 0
0 if σ(x) = 0

(5)
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where

Z =
µ(x)− f(x+)− ξ

σ(x)
(6)

Φ(Z) and ϕ(Z) denotes respectively the cumulative distribution function (CDF)
and the probability density function (PDF) of the variable Z. Z denotes the
predicted improvement divided by the standard deviation (uncertainty) and the
parameter ξ determines the weight of the exploration strategy in the equation.
This analytical form of EI is cheap to evaluate and can be optimized without
sparing on the number of evaluations. Therefore, we propose several approaches
for the optimization of the acquisition function with mixed variables.

The first approach (denoted as L-BFGS-OHE) involves a one-hot encoding
of the categorical variables and a multi-started gradient descent for the opti-
mization of the acquisition function. However, since the COCABO model do
not accept one-hot vectors, one-hot dimensions are systematically decoded be-
fore any predictions. In other words, predictions are asked for by the acquisi-
tion function optimizer with encoded inputs but they are decoded before they
pass through the model. The multi-started gradient descent is performed as fol-
lows: 1000 configurations are randomly drawn and the 5 configurations with the
highest acquisition function value are kept and a gradient descent (L-BFGS) is
performed on each of these 5 configurations.

We also propose an approach based on a ”brute-force” optimization of the
categorical space and a multi-started gradient descent on the continuous space
(see Algorithm 1). First, all the combinations of the categorical parameters are
constructed. Then, for each combination, a multi-started gradient descent (pre-
viously described) is performed on the continuous parameters. Finally, after de-
termining the maximal acquisition values for each categorical combination, the
configuration with the highest acquisition value is suggested as the next experi-
ment. This algorithm reduces the difficulty of the optimization of the acquisition
function because instead of dealing with different types of variables (or with sup-
plementary dimensions from the encoding), the acquisition optimizer only works
on the continuous dimensions. Still, it can be heavy in terms of computational
cost if the number of categories and categorical variables is large.

Algorithm 1 Categorical brute-force and multi-started gradient descent

1: Construct all categorical combinations
2: Multi-started gradient descent optimization of continuous parameters for each com-

bination
3: Choose as suggestion the configuration (continuous and categorical) with the high-

est acquisition

Lastly, we implemented an evolutionary algorithm based on ant colonies
(ACO) that can handle categorical variables [6]. In our experiments, we used the
colony hyperparameters proposed by the authors without any restart allowed.
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This algorithm is a multi-agent method inspired by the behaviour of ants. An
ant represent an evaluation at a given set of parameters. At each generation,
each ant randomly moves towards previously evaluated points with good results
(exploitation strategy). The presence of multiple ants in the colony and the ran-
domness of their movements enable the mandatory exploration of the search
space. It allows the ants to not only moves around promising areas but also
randomly explore areas that may have not been explored so far.

4 Results

For each optimization algorithm, we performed 25 runs of 55 experiments each.
At each run, we randomly drew 5 initial evaluations and, for a fairness purpose,
these 5 evaluations were used to initialize all the optimizers.

First, we compare the performances of different acquisition optimization tech-
niques (using the COCABO kernel and the EI acquisition function).

The figures 2a and 2b compare the performances of the acquisition optimizers.
They correspond respectively to a simulation of the direct arylation reaction
which contains 3 categorical variables and 2 continuous ones, and to a simulation
of the Suzuki-Miyaura reaction (case 1) which contains 1 categorical variables
and 3 continuous ones.

In both cases, ACO performs poorly compared to the two other methods.
Still, its performances are closer to the two other optimizers than the random
strategy so it will be the subject of further work to exploit the potential of the
ACO method.

In the figure 2a, the brute-force and the L-BFGS algorithm with one-hot
encoded categorical variables give similar results but in the figure 2b, brute-
force performs slightly better. Overall, the brute-force approach offers the best
performances with the steepest average convergence rate and the lowest standard
deviation (filled area).

As consequence of the results presented above, we chose the brute-force ap-
proach to be the acquisition function optimizer in the rest of our study.

The next results present a comparison between our method (composed by
the COCABO kernel, Expected Improvement and the brute-force optimizer),
Gryffin [4], COCABO [12], SMAC [5], and the work of Garrido-Merchán et al.
[3].

We used the ”naive” version of Gryffin in its authors’ implementation. We
used COCABO in its authors’ implementation with its default settings and a
starting λ = 0.5. SMAC denotes an optimization algorithm based on Random
Forest [5] and the Expected Improvement acquisition function. We used an im-
plementation proposed by Lindauer et al. [7].

In Figures 3a and 3b, the Bayesian optimization with the COCABO kernel
and the categorical brute-force optimization of the acquisition function gives the
best results: it generally converges faster to the optimum than other methods.
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(a) Benchmark function: Pd-catalysed direct arylation simulation
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(b) Benchmark function: Suzuki-Miyaura simulation

Fig. 2: Best score evolution on simulations with the use of different acquisition
function optimizers (brute-force, ACO, L-BFGS-OHE). A random optimization
strategy of each chemical reaction simulation is given.
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(a) Benchmark function: Pd-catalysed direct arylation simulation

0 10 20 30 40 50
Iterations

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Be
st

 re
su

lt

Optimum
Mixed Kernel and brute-force
Garrido-Merchán - 2020
SMAC
Griffyn
COCABO
Random

(b) Benchmark function: Suzuki-Miyaura simulation (case 1)

Fig. 3: Best score evolution on simulations with different optimization methods
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SMAC’s performances show us that it can handle categorical variables but,
overall, it performs poorly compared to the two Bayesian optimization with
Gaussian process as surrogate model.

The COCABO method fails to optimize the Suzuki-Miyaura simulation. The
multi-armed bandit (MAB) part of the COCABO method is designed for multi-
ple categorical variables with multiple categories and the Suzuki-Miyaura simu-
lation has only one categorical variable.

Our algorithm (”Mixed kernel and brute-force”) performs slightly better than
the work of Garrido-Merchán et al.. The main difference between the two meth-
ods is the use of different covariance functions. The COCABO kernel is able to
capture more complex relationships than a standard Matérn5/2 function on a
one-hot encoded space.

5 Conclusion

This paper presents a method for the optimization of chemical reactions with
mixed variables (continuous and categorical).

We expose a Bayesian optimization algorithm based on a Gaussian process
with a covariance function specifically designed for continuous and categorical
variables [12]. Also, we evaluate different methods for the optimization of the
acquisition function and show that a brute-force approach associated to a multi-
started gradient descent performs best. This approach performs globally better
than other state-of-the-art methods [4, 3, 12] on two simulated chemical reactions
with categorical and continuous inputs.

We are working on further increasing the quality of the model by modifying
the covariance function. Also, in order to fully establish the performance of the
presented method, later works will imply experimental validation in chemistry
labs.

Acknowledgement: This work was supported by the R&D Booster SMAPI
project 2020 of the Auvergne-Rhône-Alpes Region.
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Many inventory models assume that there is only one source or transportation mode to 

procure, produce, or ship products. However, in practice, inventories can be replenished from 

more than one source or via different transportation modes. The case of two different sources 

or transportation modes is referred to as a dual sourcing system, and has become a popular 

strategy in many supply chains due to offshore production, outsourcing, and different 

transportation modes. The benefits of offshore sourcing include lower costs and better 

availability of specific workforce. However, it reduces flexibility and responsiveness in the 

sense that the replenishment lead times become longer. By contrast, onshore (or domestic) 

sourcing is faster but incurs higher costs. The resulting dual sourcing setting, that is, the 

trade-off between utilizing offshore production and an onshore source is the motivation for 

this study. 

We study a supply chain that consists of a buyer and two suppliers. The buyer faces 

stochastic demand and has two different supply sources for the same product: a slower 

regular supplier and a more expensive expedited supplier. Such dual sourcing inventory 

systems have been widely studied in the literature, evaluating what is best for the buyer. As 

266



the decisions of the buyer may adversely affect the costs of the suppliers, and also, 

potentially, the supply chain profit, we adopt the perspective of the entire supply chain. We 

compare the performance of two different policies in a multi-period and two-echelon setting: 

the Dynamic Order Policy (DOP) and the Standing Order Policy (SOP). In the long-run, the 

DOP policy converges to the Dual-Index Policy (DIP), which is optimal for the buyer in the 

case of a lead time difference of one period. On the other hand, the SOP policy is appealing 

from a practical perspective as a fixed (standing) quantity is ordered from the regular supplier 

in each period. We show that from our supply chain perspective, the DOP policy is not 

necessarily the better performing policy, and we define the conditions for the preferred 

policy. We evaluate the policies numerically under various conditions to obtain relevant 

managerial insights. We find that the preferred policy from a supply chain perspective is 

mainly the result of a trade-off between responsiveness, flexibility, and cost. Flexibility 

appears to be valuable if there is a substantial cost difference between the suppliers. 

In a single-echelon system, that is, from the buyer’s perspective, the DOP policy, which 

converges to DIP in the long-run, is known to be optimal and will obviously outperform SOP 

(in case of a lead time difference of one time period). However, from a supply chain 

perspective, we show that this is not necessarily the case. We define the conditions for the 

preferred policy and we demonstrate that in several cases, SOP outperforms DIP in a supply 

chain setting (with a lead time difference of one period), particularly when the wholesale 

price difference is small, the level of demand uncertainty is high, the unit inventory holding 

and backorder cost is high, and when the unit profit margin of the expedited supplier is large. 

This result is not only interesting from a theoretical perspective, but also has significant 

practical implications. In general, we find that the flexibility offered by the DOP policy is 

only valuable if there is a substantial cost difference between the suppliers. Otherwise, the 

SOP policy becomes a legitimate policy alternative, especially given its simple structure. 
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ABSTRACT 

Increasing penetration of renewable energy sources (PV, Wind) due to environmental 

constraints, impose several technical challenges to power system operation. The fluctuating 

and intermittent nature of wind and solar energy requires constant supply-demand balance for 

electric grid stability purposes. 
 

Self-consumption is a regulatory framework intended to promote local consumption over 

export. Thus, self-consumption will raise the profit of PV electricity from grid-connected 

residential systems and lower the stress on the electricity distribution grid. 
 

This work presents a novel Deep Reinforcement Learning (DRL) Based Energy Management 

System (EMS) to control a Home Microgrid system powered by renewable energy sources (PV 

arrays) and equipped with an energy storage system. An optimal energy scheduling is carried 

out to maximize the benefits of available renewable resources through self-consumption. A 

DRL approach is used to make optimal decisions and generate the optimal management 

strategies. 

 

Keywords: Microgrid ; Smart Grid ; Deep Reinforcement Learning ; Self-consumption ; 

Optimal scheduling ; Optimization. 
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Abstract. Despite the studies on human resource allocation, a prob-
lem of dissatisfied employees arises in developing and under-developed
countries while decentralizing human resources nationwide since rural
areas have fewer facilities than urban areas. Randomly allocating em-
ployees contributes to employees’ dissatisfaction if they are displeased
with where they are assigned, leading to an unstable work environment.
However, allocating employees solely based on their satisfaction may lead
to a centralized solution around the urban cities. Therefore, employee sat-
isfaction and dispersion are the two most essential but opposing factors
for employee decentralization in developing countries.
In this study, we have addressed the problem of employee decentralization
by proposing a Multi-Objective Optimization approach that maximizes
the two conflicting objectives: employee satisfaction (ES) and employee
dispersion (ED). A neural network is applied that predicts the ES of
an employee allocated in an area/city. Moreover, we have formulated a
dispersion function that provides a score based on how well dispersed a
specific allocation is. Using a Multi-Objective evolutionary algorithm, we
have developed an allocation framework that maximizes these conflicting
objectives and finds optimal allocations.

Keywords: Employee Dispersion · Employee Satisfaction · Human Re-
source Allocation in Developing Countries · Multi-Objective Evolution-
ary Algorithm

1 Introduction

Non-optimal worker allocation in developing countries is a crucial problem to be
solved. There are studies on identifying the problems regarding resource alloca-
tion and on finding the optimal solutions [1, 2]. However, these studies do not
address the problem of declining employee satisfaction and productivity [3] when
the workforce is decentralized throughout developing and underdeveloped coun-
tries. In developing countries, such as Bangladesh [4], rural areas are primarily

270



under-developed as compared to urban areas, motivating the majority of people
to move to cities for their livelihood [5]. Consequently, the workforce tends to be
centralized around cities [6]. These problems are more observed explicitly among
essential workers such as doctors [7], who are often forced to work in rural ar-
eas [8]. Most people designated to such areas show acute urgency to move away
posthaste [9] owing to extreme dissatisfaction, causing a higher turnover rate
and an unstable work environment [10]. On the other hand, the critical prob-
lem with allocation solely based on employee satisfaction is that the majority
of the professionals would be more interested in working in the more facilitated
areas [5]. Thus, the density of worker allocation would be skewed in favor of
regions with more amenities, which will result in a vacuum of professionals in
underdeveloped regions. Therefore, we need to implement a method to ensure
the proper balance between worker dispersion and satisfaction.

To tackle the problem, we first predict employee satisfaction allocated to a
particular area/city using Multi-Layer Perceptron (MLP) with nine influencing
factors. In addition to this, we formulated a dispersion function that calculates
the decentralization score of an allocation1. These two objectives are contra-
dictory, especially for developing countries such as Bangladesh; hence, we use
Multi-Objective Optimization to simultaneously maximize these objectives.

2 State of the Art

There have been multiple studies on resource allocation, and human resource
allocation [1, 2]. The author of [1] has proposed a multi-objective optimization
solution aiming at minimizing total cost resulting from resource overallocation,
project deadline exceedance, and day-by-day resource fluctuations. In the study
[2], the author has shown how the Multi-Objective Particle Swarm Optimization
Algorithm can be used for multi-criteria human resource allocation. Another
study [11] focuses on minimizing total cost and the total time of logistic relief
operation in emergencies.

Several studies can be found that focus on worker and resource distribution
in countries such as Nigeria[12] and China[13]. The author of [12] focused on the
factors that hinder recruitment and retention of the healthcare workforce, such
as insufficient infrastructure, inadequately trained staff, sub-optimal distribu-
tion of healthcare workers, mainly in the rural areas, and suggested approaches
to improve this situation in Nigeria. The authors of [13] pointed out the eth-
ical flaws in various Government policies leading to the inequality in resource
distribution and have proposed countermeasures that optimize resource alloca-
tion, such as formulating better policies, strengthening the responsibilities of
both governmental and public financial investments, improving the utilization
of resources.

Two works are found that focused on the satisfaction of customers[14] and
employees[15]. The author of [14] proposed a Satisfaction Function (SF) which is

1 An allocation refers the assignments of m number of employees to n number of cities.
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based on the customers’ attitude regarding the products the company is offering.
The authors of [15] proposed to make the work environment suitable enough such
that the employees can have more decision-making power which will increase sus-
tainable practices and improve employee satisfaction. Another study [16] focused
on finding the relationship between employee engagement and job satisfaction.
They have also extracted seven job satisfaction factors, such as work culture and
fairness at work. In [17], employee satisfaction has been predicted by a machine
learning model by analyzing employees’ reviews.

To best our knowledge, although there have been several works on human
resource allocation, the problem of maximizing human resource dispersion (i.e.,
decentralization) while also maximizing employee satisfaction in their newly des-
ignated area has not been addressed yet. There have been studies regarding iden-
tifying job-satisfaction influencing factors inside organizations [17], but none of
these studies focuses on identifying the influencing factors of employee satisfac-
tion when they are allocated to new geographical areas.

3 Methodology

To maximize the two conflicting objectives of the problem: employee satisfac-
tion and dispersion, we formulate the problem as a multi-objective optimization
problem. We develop a learning model for our satisfaction predictor and for-
mulate the dispersion function. Finally, optimized solutions are found by using
a multi-objective evolutionary algorithm. The details of our methodology are
presented in this chapter.

3.1 Problem Formulation

Please consider that we want to allocate m number of people to n number of
areas. We have to find optimal solutions that maximize the total satisfaction of
m people while fulfilling all n cities’ demands of employees as much as possi-
ble. In order to solve this, we use the following two inputs in our optimization
framework:

– Cities or areas where we want to allocate our employees: The number
of vacancy each of these cities have for a given profession.

– The people we want to allocate to different cities: Individual de-
scription of each of these people as required by the SF (more description in
3.4).

In order to represent the first input, we considered an array where the indexes
represent the cities and the values in the indexes represent the maximum capacity
or requirement/demand of the corresponding city has for a specific profession.
We call this our ”Capacity Array”. We demonstrate a figure representing our
Capacity Array in Fig. 1, where a0 − a5 denotes the considered six areas. For
example, area number 0, or a0 has six vacancies, a1 has seven vacancies, and so
on. Similarly, our second input is represented by an array that we call ”Employee
Array”, where each value represents the information of an individual employee.
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Fig. 1: Capacity Array

3.2 Problem Representation

We represent the problem as an array of size m, where the value of the specific
element of the array can be 1 to n. For example, a value of 5 at the index 1 of
the array means employee number 5 is assigned to city number 1. An illustration
is shown below in Fig. 2.

Fig. 2: Output of Optimization Framework

3.3 Overview of the Objectives

In this section, we have briefly described both of our objectives: employee satis-
faction and dispersion.

– Satisfaction: The first objective is the maximization of employee satisfac-
tion. Satisfaction of one employee refers to a number denoting how satisfied
the employee is, on a scale of 1 to 5, when he/she is assigned to a certain
area. If we consider that there are m employees, and if we denote individual
satisfaction as sm then for an allocation, the total satisfaction, S is

S =
m∑

i=1

sm (1)

– Dispersion: Our second objective is to increase the dispersion of a solution,
which refers to allocating as well-spread as possible. A trend in developing
countries[18] employees are satisfied only when they are designated to devel-
oped regions. Therefore, maximizing satisfaction reduces dispersion.

3.4 Modelling Satisfaction Function

In this section, we will discuss how features for our machine learning model
is selected for the satisfaction prediction of an employee. A social experiment
is conducted for feature selection and the data collection process. Afterward,
machine learning algorithms are used for modeling employee satisfaction.
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Feature Selection In order to design the SF, we first needed to explore the
factors/features that influence satisfaction. To ensure an unbiased process, we
performed a social experiment by randomly choosing 20 unrelated people. We
asked them one question: which factors would affect their living satisfaction in an
area outside the capital. We completed the experiment without the respondents
knowing which parts of their answers we would use in our research to avoid any
bias. We present the results below.

– No one would move to any city with high crime rates.
– Seventeen of them would be happier if closer to their families.
– Three of the five married people did not want to move without their spouses.
– Four out of the five married people additionally mentioned that having good

schools in their area would be vital to them.

Upon introducing the topic of average house rent of the city, as some cities
have higher house rent, all of them agreed to this being a significant issue to con-
sider. Their answers were varied based on gender, age, and occupation. Therefore,
nine factors/features are chosen from this social experiment to use in our data
collection process: gender, age, occupation, security, house rent, travel time from
hometown, schooling, marital status, and spouses’ willingness to relocate with
their partners.

Creating Questionnaires There being no curated dataset to train our satis-
faction predictor, we created our own dataset by circulating questionnaires. We
have categorized gender, age, occupation, marital status, and spouses’ willing-
ness to relocate with their partners as demographic factors. The rest four factors
are scenario-based.

These remaining four scenario-based factors have three levels: low, medium,
and high. The respondents have been presented with a scenario by combining
the different levels of the four features and asked to provide a satisfaction score.

There are a total of 34 or eighty-one possible scenarios. It was impractical to
ask to score each respondent all 81 virtual scenarios. Therefore, we had to care-
fully partition the larger set of eighty-one scenarios into smaller groups, each
consisting of three unique scenarios. Thus, (81/3) = 27 sets of questionnaires
were formed, with each one consisting of identical demographic questions and
three unique scenario-based questions. The three scenarios in each set were no-
ticeably different enough, so the respondents could easily differentiate them. A
sample set of three virtual scenarios representing three areas is as follows:

– low security, medium schooling facilities, low house rent, medium travel time
from hometown

– medium security, low schooling facilities, medium house rent, low travel time
from hometown

– high security, high schooling facilities, low house rent, high travel time from
hometown

We asked the participants to rate their satisfaction on a scale of 1 to 5 for each
scenario.
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It was vital to evenly distribute these 27 sets among the respondents as we
want to collect respondents’ satisfaction for all data points. Therefore, we created
a website where we uniformly sampled the scenarios presented to users to ensure
balanced distribution. We have collected 855 data points in total.

Necessity of Learning Models/algorithms It is necessary to predict em-
ployee satisfaction for our allocation framework. SF modeling problem can be
considered as a regression problem. However, satisfaction cannot be represented
as a linear combination of its features because it is a complicated and non-linear
psychological issue that can vastly vary even within the same demographic. These
correlations can be identified by advanced machine learning models. Therefore,
We have experimented with various machine learning regression algorithms (pre-
sented in section 4.1) to see which one performs best for our case.

3.5 Modelling Dispersion Function

The task of the dispersion function (DF) is to measure the distribution of workers
in different areas/cities in a numeric value. If there are four cities and workers
are assigned in two cities while there is no allocation in the other two cities, the
dispersion value will be lower than the scenario where workers are assigned in
all four cities. We also formulated the function so that it has a relation with the
number of required personnel in each area. We have denoted the dispersion of
an occupation p by D(p), and the function can be represented as follows:

D(p) = |R(p)|+
n∑

i=1

dpi (2)

Here,

R(p) = { i | 0 ≤ i & alpi ≥ minreqpi } (3)

minreqpi =


tp ∗ cpi∑n

j=1 cpj
∗ 100

100

 (4)

=

⌊
tp ∗

cpi∑n
j=1 c

p
j

⌋
(5)

dpi =





alpi
cpi
, if alpi ≤ cpi

1− (alpi −cpi )

cpi
, otherwise

(6)

Where,
n = Carnality of the set of areas brought into consideration
R(p) = Set of regions/areas where minimum requirement of allocation of profes-
sion p have been met
dpi = dispersion of an area i of profession p
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minreqpi = Minimum number of employees of profession p that needs to be al-
located in area i
alpi = number of person allocated of profession p in area i
cpi = Capacity or requirements of number of profession p in area i
tp = total number of available employees of profession p

The dispersion of an area di is the ratio between the number of allocated
persons and the requirements. If the number of allocations met requirements,
we would achieve area-wise maximum distribution, which is 1. However, the
algorithm may allocate more people than the areas’ requirements. Then, we
subtract a penalty from the maximum dispersion.

Moreover, in most developing countries, there is a shortage of skilled em-
ployees. Therefore, the total number of required people (

∑n
j=1 c

p
j ) is higher than

the available number of people (tp). Therefore, we added a secondary mecha-
nism (i.e., minreq) to calculate the minimum possible people the algorithm can
allocate in an area given that there are tp number of professionals.

Finally, when calculating total dispersion score, the following two factors are
added:

– The number of cities/areas where the minimum number of required employ-
ees for that city/area has been allocated

– Summation of all the area-wise dispersion

The theoretical maximum dispersion value can be achieved if for each city, its
exact number of minreq professionals are assigned to it.

Sample example In Table 1, we have presented seven cities indexed from
zero to six. We have mentioned their required number of employees, and have
calculated their minimum requirements, dpi and if their demands have been met.

Table 1: Calculating Minimum Requirement, dpi and Rp

City No Capacity Allocation minreq dpi Rp

0 6 4 4 0.66 0
1 10 7 7 0.7 1
2 8 6 6 0.75 2
3 10 7 7 0.7 3
4 3 3 2 1 4
5 4 3 3 0.75 5
6 8 6 3 0.75 6

Therefore, R(p) = {0, 1, 2, 3, 4, 5, 6} and |R(p)| = 7. Thus, dispersion, D(p) =
|R(p)|+∑n

i=1 d
p
i = 7 + 5.316 = 12.316

4 Experiments and Results

For implementing the SF, we used scikit-learn [19], a python-based machine
learning framework. Implementation 2 of multi-objective optimization for find-
ing optimum allocation using SF and DF has been done using jMetalPy [20],

2 https://github.com/aniquaTabassum/Undergrad-Thesis
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a python-based multi-objective meta-heuristic framework. The results of the
prediction of SF of different learning algorithms are presented. Different hyper-
parameter settings are explored to find the best possible settings. Finally, the
results of two optimization algorithms are shown.

4.1 Results of Satisfaction Modelling

This section shows the results of different learning models. We also present some
of the hyperparameter settings we have experimented with to find the best set-
ting for the model. In Table 2 we have presented the different methods and their
R2 scores [21] on training and cross validation (CV) dataset.

Table 2: R2 Score of Training and Cross Validation (CV) for Different Methods

Name Train CV

Linear Regression[22] 40.01% 42.1%
Linear Regression in log-space[23] 42.6% 45.3%

Random Forest[24] 74.8% 34.0%
2-Degree Polynomial Regression[25] 47.5% 48.1%
3-Degree Polynomial Regression[26] 57.8% 0.43%

Multi Layer Perceptron Regression[27] 51.3% 49.7%

We can see that MLP performs the best R2 score in both training and cross-
validation datasets combined. So, MLP Regression is the best-suited method for
this problem as it has the highest R2 score. Getting an R2 score higher than 0.5
is hard when the model includes human psychology because each human thinks
differently, so it is typically hard to generalize it [28].

Afterward, we do hyperparameter tuning by performing several experiments
with different parameter settings for the MLP model. The dataset was stan-
dardized and normalized before performing the experiments and running the
iterations until convergence. We present the results in Table 3. As per Table 3,

Table 3: R2 Score of Training and Cross Validation

Batch Size Optimizer Activation Layers Neurons Per Layer LR Train CV

8 LBFGS ReLU 3 (100, 8, 8) 0.0013 51.30% 49.74%
8 LBFGS tanh 3 (100, 8, 8) 0.0013 45.06% 46.83%
8 Adam ReLU 3 (100, 8, 8) 0.0013 -80.0% -35.0%
8 LBFGS ReLU 3 (100, 8, 8) 0.0003 50.95% 48.89%
16 LBFGS ReLU 5 (100, 16, 16, 8, 8) 0.0013 49.53% 49.53%
4 LBFGS ReLU 4 (8, 8, 8, 25) 0.0013 49.9% 45.0%

we chose a 3-layer MLP regressor with ReLU activation function in the hidden
layer, LBFGS optimizer, and a learning rate of 0.0013 as our model, as this
performs the best on both training and cross-validation datasets.

4.2 Results of Optimization

This section presents a scenario of a doctor allocation problem in Bangladesh.
We chose the medical profession for our optimization experiments since they
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are categorized as one of the foremost essential workers[7] and are needed in
every region of a country. However, our framework works appropriately for other
professions as well. Afterward, optimization results of the problem are presented.

Scenario: A Doctor Allocation Problem Thirty-seven doctors filled out
our survey, and we have applied our framework to allocate all of them in the
six major cities of Bangladesh. Even with just 37 employees being allocated to
6 cities, there are 637 possible allocation combinations, which is impossible to
simulate using an exhaustive search. We collect the necessary information (i.e.,
security, house rent, travel time from hometown, schooling) for the six cities,
and the features of the cities are labeled by different markers (i.e., low, medium,
and high) based on the collected information. For measuring schooling facilities,
the results of the Secondary School Certificate (SSC) exam [29] of the schools
in each of the cities for the year 2019 [30] are considered. We took the median
house rent [31] for each of these cities. Security is estimated by the total crime
rate for each of these cities in 2019 calculated from the data [32]. The maximum
time (data taken from Google Map [33]) required to reach one city to another
is taken as the travel time between two cities. We prefer travel time over road
distance (in KM) because the road distance does not reflect the real situation in
Bangladesh as road traffic condition is very poor 3.

Finally, the features of the cities are ranked in low, medium, and high. A
feature value fall within bottom 33.33% is ”low”, a value in between 33.33% and
66.66% is ”medium”, and a value over 66.66% is considered as ”high”.

Results: We compare the performance of the two most used multi-objective
optimization algorithms (NSGA-II [34], and SPEA2 [35]) on our problem. Two
algorithms separately ran fifty times to make a statistically significant compari-
son. The parameter settings for the experiment are given below in Table 4.

Table 4: Parameter Setting for Optimal Algorithm

Parameter NSGA-II SPEA-II

Population Size 100 100
Crossover Type Single-point Single-point

Crossover Probability 0.9 0.9
Mutation Type Random Mutation Random Mutation

Mutation Probability 0.0274 0.027
Max Evaluations 30000 30000

Figure 3 shows the approximated true Pareto-front of the problem. Since the
true Pareto-front is unknown, we ran the algorithm 50 times, merged the results,
and created an approximation of the true Pareto front. In Figure 3, point p1 is an

3 Road distance will perform similarly if the road traffic condition is similar to all over
the region.

4 mutation probability = 1
number of decision variables

= 1
37

= 0.027
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Fig. 3: Approximation of True Pareto-Front

extreme solution with the highest satisfaction value, 166 out of 185, but has the
lowest dispersion value, 4.25 out of the theoretical maximum value of 12.31. This
solution can be chosen when ES is far more important than ED. Point p3 has
the lowest satisfaction value, 130 out of 166, and the highest possible dispersion
score, 12.31. Such a solution is ideal if achieving maximum dispersion is the goal.
Point p2 is a random solution in the Pareto-front. Here, the satisfaction score is
143, and the dispersion score is 10.61.

Boxplots of hypervolume [36, 37], IGD [36, 38] and spread [36, 39] are pre-
sented in Figure 4 where we can see that the two algorithms are producing
similar results. It can be concluded that either algorithm could be chosen.

(a) HV (b) IGD (c) Spread

Fig. 4: Comparison between NSGA-II and SPEA-II

5 Conclusion

In this study, we have proposed a more practical approach for human resource
allocation for developing and under-developed countries, maximizing employee
satisfaction and dispersion, essential for stabilizing the workforce problem in ru-
ral areas. First, we have identified the satisfaction influencing factors for employ-
ees and have gathered a dataset accordingly to create our satisfaction predictor.
Then we mathematically formulated employee dispersion to ensure fair distribu-
tion of employees. Our proposed dispersion function also considers the shortage
of human resources. A multi-objective evolutionary algorithm approach is ap-
plied to find the optimal set of solutions, among which any solution can be chosen
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based on the situation at hand. On our dataset, the highest satisfaction score
achieved by our framework is 166 out of 185 (i.e., 37 doctors can have maximum
satisfaction of 5), and the average satisfaction score of 37 employees is 4.49 out
of 5.0, which is very high. Even in a solution where the dispersion score is 10.16
out of 12.31 (i.e., maximum dispersion can be calculated theoretically, please see
dispersion modeling section in 3.5), the average satisfaction of 37 employees is
as high as 3.9. We plan to improve our satisfaction model by feeding it more
data in the future. The proposed allocation framework is generalized and can be
applied for building an organized and content set of workforce, since decentral-
izing employees is becoming a necessity for companies as they keep expanding,
be that among the cities of a country or worldwide.
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1 Introduction

Mixtures are the subject of many decision-making fields such as chemistry, geology, or economy.
In order to obtain a compound product with specific properties, it is necessary to determine the
relative quantities of the ingredients used. For instance, the features of an alloy (e.g., strength,
corrosion, creep resistance) depend on the proportions of its elements. The issue we address in this
paper concerns mixture design using multi-objective optimization. In this context, a solution x is
made of d components xi verifying the following constraints:

d∑

i=1

xi = 1 (1)

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , d (2)

where x
(L)
i and x

(U)
i are respectively the lower and upper bounds of the variable xi. In the most

general case, the design space is called the unit simplex. Constraint (1) has a drastic consequence
on the variables xi: they cannot be independently controlled. In this study, we formulate a novel
variant of differential evolution that takes this specificity into account.

2 A differential evolutionary algorithm for optimizing mixtures

Differential Evolution (DE) is a powerful form of evolutionary computing, notably for real para-
meter optimization [7]. DE generates an initial population of candidate solutions and creates new
individuals by combining existing ones. At each generation, mutation, recombination and selection
operators are applied and this process repeats itself until a given termination criterion is satisfied
(usually after a given number of generations). Let X be an individual of the population PG obtained
at generation G. Mutation expands the search space by computing a donor vector V from random
individuals extracted from PG. Recombination (also called crossover) incorporates information from
X and V to create a new trial vector U . Selection decides if X must be replaced by U at generation
G + 1. Constraints (1) and (2) lead to several modifications of the standard DE algorithm. Our
variant called DES (DE over a Simplex) is mainly based on the fact that Constraint (1) defines a
hyperplane H. So any linear combination of solutions lying on H also verifies Constraint (1). In a
second step, Constraint (2) is handled by a dedicated repair method.

2.1 Initialization of the population

A common practice for handling mixtures is to create individuals on the unit hypercube and to
project them onto the simplex. More precisely, each generated solution X is projected onto the
simplex along the ray that passes through X and the origin. This strategy (referred as RM repair
method in section 3) is not recommended as it introduces a bias towards the center of the simplex.
A better approach is to apply specific methods for generating uniformly distributed points on a
unit simplex, such as the Maximally Sparse Selection method [3].
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2.2 Mutation operator

Mutation is the most distinctive operator of DE in relation to other evolutionary algorithms.
The mutant (or donor) vector is obtained by randomly selecting three different individuals in
the population (Xa, Xb, Xc). A scaled difference of vectors is the basis of several variants of the
mutation operator. We adopt the most common strategy, expressed as follows: V = Xa+F (Xc−Xb)
where F is an input parameter of the DE algorithm. In our case, the donor has an important
property: its vector lies in the same hyperplane H than the current population (Constraint (1)),
but not necessarily within the simplex. As a result, the only required adaptation consists in handling
the bounding box defined by Constraint (2). This will be the aim of the repair operator described
in section 2.4.

2.3 Crossover operator

This type of operator creates an offspring U from a solution X and a donor vector V . The binomial
operator is one of the most used methods in DE [7]. It works as follows: a component of U is taken
with probability CR from V , and with probability 1-CR from X, where CR is an input parameter
called the crossover rate. The trial vector generated by this operator is likely to be located outside
the simplex. Fortunately, there exists a more appropriate operator called the arithmetic crossover
(AC [2]). This operator works as follows: U = X + k(V −X) where k is a random value in [0, 1].
It is obvious that AC generates a trial vector verifying Constraint (1). However, contrary to the
binomial method, AC generates a vector U which contains no component of X. Even if a candidate
solution X contains some desirable proportions, they will be more or less altered in the trial vector,
except for the case where k = 0. Therefore, we propose a more conservative approach inspired from
the binomial crossover. As in the original method, the set of component indexes I = {1, 2, . . . , d}
is randomly split into two partitions I and Ic, and a part of the trial vector is assigned from X:
Ui = Xi, i ∈ I. The remaining components Uj , j ∈ Ic, derived from V , must have a sum equal
to s = 1 −∑i∈I Xi. Therefore, U lies on the hyperplane HX,I defined by the following equation:∑

j∈Ic Uj = s. Let V ′ be the projection of V on HX,I . The trial vector is completed as follows:
Uj = V ′

j , j ∈ Ic.

2.4 Repair operator

Some individuals generated by the crossover and mutation operators may lie outside the bounding
box defined by Constraint (2). A common strategy is either to repair or to substitute an unfeasible
solution [5]. Many of these methods do not apply in our case, because they treat each component
separately. A well adapted bound handling technique is a parent centric operator called the Inverse
Parabolic Spread Distribution (IPSD) [6]. This algorithm employs a probability distribution func-
tion to bring a solution S back into the search space while utilizing the information of a feasible
individual X. By construction, the repaired solution verifies Constraint (2) and lies on the line
joining X and S. As this line is included in H, Constraint (1) is also verified.

3 Results

The multiobjective benchmark problem DTLZ2 [4] is based on M objectives of the following form:
fi(x) = (1 + g(xp)).hi(xq) where xp and xq form a partition of x. DTLZS2 is an adaptation of
DTLZ2 in which the design space is the unit simplex. In our variant, the component xM can be
derived from Constraint (1). Therefore, xp now represents the n−M last components of x and xq

the first M−1 components. The g function is expressed as: g(xp) =
∑

xi∈xp
x2i . The Pareto-optimal

solutions of DTLZS2 lie in the same concave region than in the original version. As shown in Fig. 1,
the only difference is that the octant is here incomplete because of Constraint (1).

The experiments were performed on three variants of our DES algorithm (RMA, ACA and
ABA), all based on a standard Pareto-based DE/rand/1/bin and implemented using the pymoo
framework [1]. RMA is a naive algorithm based on a usual solution space (hypercube) and simply
repairs the errors using the RM method described in section 2.1. ACA and ABA both have the same
methods as a standard DE except for the IPSD repair method and the crossover operator. ACA
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used the arithmetic crossover operator and ABA used our dedicated binomial crossover operator.
Our test implies a population of 200 individuals in dimension d = 30 and the number of generations
was set to 100. A series of 21 runs with different random initial populations were conducted and the
median of the Inverted Generational Distance (IGD) was computed. Fig. 2 shows the performance
measures for various dimensions: M = 3, 5, 8, 10, 15, 20. These results indicate that our method
outperforms the other ones on this test and that ACA appears to be less efficient than RMA.

Fig. 1. Pareto Front of DTLZS2 with M = 3 Fig. 2. Performance results

4 Conclusions and Future Work

In this paper, we have introduced DES, an algorithm dedicated to the optimization of mixtures.
We have shown that a differential evolution algorithm is well adapted to the simplex search space.
Mutation and recombination of existing solutions can be easily performed so that the new candidate
solutions remain in the hyperplane including the search space. A general bound handling method
can be reused in our particular case to keep solutions inside the bounding box. Our preliminary
results show that our algorithm works successfully on a well known test function that has been
adapted to the unit simplex. In the next future, the DES algorithm will be used to perform multi-
objective optimization of superalloys.
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5. Vinicius Kreischer, Thiago Tavares Magalhães, Helio Barbosa, and Eduardo Krempser. Evaluation of
bound constraints handling methods in differential evolution using the cec2017 benchmark. 10 2017.

6. Nikhil Padhye, Kalyan Deb, and Pulkit Mittal. Boundary handling approaches in particle swarm
optimization. Advances in Intelligent Systems and Computing, 201, 12 2013.

7. K.V. Price, R.N. Storn, and J.A. Lampinen. Differential Evolution: A Practical Approach to Global
Optimization. Natural Computing Series. Springer, 2005.

284



A Comparison of PSO-based Informative Path Planners for
Detecting Pollution Peaks of the Ypacarai Lake with

Autonomous Surface Vehicles

M. Jara Ten Kathen1, D. Gutiérrez Reina2, and I. Jurado Flores1
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1 Introduction

The appearance of cyanobacteria in the Ypacarai Lake, Paraguay, is affecting not only the ecosys-
tem but also the public health and the local economy [1]. Several works based on Autonomous
Surface Vehicles (ASVs) are being developed for the monitoring of the water quality of the lake
[1][2]. The approaches consist of equipping an ASV with a Guidance, Navigation and Control
(GNC) system and sensors that measure water quality parameters, such as pH, nitrate, conduc-
tivity, among others. The acquired data can be used to create an estimated model of the water
quality of the lake.

This paper focuses on the performance comparison of PSO-based informative path planners.
Seven algorithms based on PSO are compared. The algorithms are: the Classic PSO; an improved
PSO based on Gaussian Process (GP), the Enhanced GP-based PSO [2]; four variants of the En-
hanced GP-based PSO; and the PSO based on Epsilon Greedy. The four variants of the Enhanced
GP-based PSO are algorithms that come from leaving active a term of the Enhanced GP-based
PSO algorithm, they are: the Local Best algorithm, the Global Best algorithm, the Uncertainty
algorithm and the Contamination algorithm. The GP is used as a surrogate model. The values of
the coefficients of the Classic PSO are set according to [3]. To obtain the optimal values of the
coefficients of the Enhanced GP-based PSO algorithm, Bayesian Optimization (BO) is applied.
The main contribution of this work is the comparison of PSO-based informative path planners for
monitoring high pollution areas using a fleet of autonomous surface vehicles.

2 Related Work

Solving non-linear real-world problems and working with different individuals/agents are some
of the advantages of Swarm Intelligence (SI). Among the SI-based algorithms is the PSO. This
algorithm contains few hyper-parameters to be set or tuned and the application of this algorithm
is straightforward. Because of this, PSO is widely used as a basis for path planners [2] [4]. However,
it has the disadvantage of getting stuck at a local optimum. To alleviate this limitation, sensors that
measure water quality parameters are used. The problem of finding the optimal path maximizing
the obtained information is known as the Informative Path Planner problem [5]. Approaches based
on heuristic and approximation techniques such as the GP are used in order to maximize this
information [6]. In [6], GP is used as a surrogate model for a path planner based on BO. In the paper,
an analysis of kernel functions (constant, Matérn, Radial Basis Function (RBF), among others)
and acquisition functions (Expected Improvement (EI), Probability of Improvement (PI), etc.) is
presented. Likewise, the authors developed improvements to the classical acquisition functions in
order to achieve a better performance of the monitoring system with an ASV. In [7], the authors
extend their previous work by implementing a fusion of acquisition functions.

3 Methodology

For this work, the performance of seven PSO-based algorithms, Classic PSO, Enhanced GP-based
PSO, PSO based on the Epsilon Greedy technique, and 4 variants of the Enhanced GP-based PSO,
were compared. These 4 variants consist of leaving one term of algorithm [2] active.
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– Classic PSO: The PSO is a meta-heuristic algorithm inspired by the social behavior of a flock
of birds [8]. Each element p is called a particle and a set of particles is a swarm. The movement
of the particles to find the global maximum is based on their own experience together with
the experience of the swarm. The next velocity of the particle vt+1

i , Eq. 1a, is updated with
the velocity at that instant vt

i , the best value of the particle pbest
t
p and the best value among

all particles gbestt. c1 and c2 are the acceleration coefficients that determine the weight of
exploitation (pbesttp) and exploration (gbestt). w is the inertia term. r1 and r2 are random
values in the range [0, 1]. The position is updated with Eq. 1b.

vt+1
p = wvt

p + c1r
t
1

[
pbesttp − xt

p

]
+ c2r

t
2

[
gbestt − xt

p

]
(1a)

xt+1
p = xt

p + vt+1
p (1b)

– Enhanced GP-based PSO: This algorithm combines the meta-heristic PSO algorithm and
a surrogate model, GP, to alleviate the limitations of the classical PSO [2]. To Eq. 1a, two
more terms are added, the maximum uncertainty maxσt and the maximum mean maxµt of
the surrogate model. This modification is made in order to guide the vehicles to the areas that
were not explored (uncertainty) and to exploit the areas with high levels of contamination
(mean). The informative path planner uses the samples taken by the sensors and creates an
estimated ground truth model, with these data, calculates and selects the positions of the
maximum uncertainty max un and maximum contamination max con values in order to
update the next ASV speed using the Eq. 2. c3 and c4 are the acceleration coefficients that
allow to determine the importance of the exploration of unexplored areas and the exploitation
of areas with high levels of pollution. r3 and r4 are random values in the range [0, 1]. The
position is updated with Eq. 1b.

vt+1
p = wvt

p + c1r
t
1[pbest

t
p − xt

p] + c2r
t
2[gbest

t − xt
p] + c3r

t
3[max unt − xt

p]+

c4r
t
4[max cont − xt

p]
(2)

– Variants of the Enhanced GP-based PSO: The following variants of the Enhanced GP-
based PSO have been considered for comparison purposes.
• Local Best: This algorithm consists of leaving only the local best term, pbesttp, active,

apart from the velocity term. Because of this, the trajectory generated for an ASV is only
influenced by the experience of the vehicle itself, it focuses on exploiting the zone with the
best optimum found by the ASV.

• Global Best: Unlike the Local Best algorithm, the global best focuses on surface ex-
ploration, since the term that remains active is the global best, gbestt. This allows the
vehicles to learn from the experience of the fleet.

• Uncertainty: While the Local Best and Global Best algorithms learn from the experience
of the vehicles, the Uncertainty and Contamination algorithms use data from the surro-
gate model. The Uncertainty algorithm focuses on surface exploration using the maximum
uncertainty data, max un, from the GP.

• Contamination: The Contamination algorithm takes the maximum contamination term,
max con, which would be the maximum mean value of the surrogate model, to guide
vehicles to the area of highest contamination. It focuses on the exploitation of such a zone.

– PSO based on Epsilon Greedy: This algorithm consists of using the epsilon greedy tech-
nique so that the values of the coefficients of Eq. 2 are dynamic. In other words, while the
path planner is running, the objective of the algorithm changes in intervals, depending on a
condition, between focusing on exploring the surface or exploiting areas with high degree of
contamination. The condition that must be met is that the ϵ value is greater or less than a
random value val. At the beginning of the algorithm, the value of the ϵ function is 0.95, which
means that there is a 95% probability of exploration. Once the ASVs travel a distance dϵ0, the
value of epsilon decreases ∆ϵ at each step (1,000 meters), until the vehicles reach a distance
dϵf . At that point, the epsilon value is set to 0.05, where there is 5% probability of exploration
and 95% probability of exploitation.

4 Results

For the simulations, 10 different scenarios or ground truths are used, in all simulations the ASVs
start from the same starting point. The end criterion of the algorithms is the distance traveled, the
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simulation run until one of the vehicles travels 15,000 meters. The metric used for the comparison
of the algorithms is the error between the value at the maximum contamination point and the
value estimated by the surrogate model at that point. The results shown in Table 1 indicate
that the best performances are obtained by the Enhanced GP-based PSO and the Contamination
algorithms. Regarding the Enhanced GP-based PSO, this is due to the fact that the BO is used to
search for the combination of values of the coefficients with the lowest error in the monitoring of
the high contamination area. The tuning results indicate that the coefficients that determine the
exploitation of the space (c1, c4) should be active with high values, the global best term should
have a small weight (c2) and the maximum uncertainty term should be inactive, c3 = 0. These
last two terms allow the exploration of the surface. This combination allows the vehicles to exploit
the zones where they are moving and the zone with the highest level of pollution. Because the
weight of the global best has a non-zero value, the vehicles also explore the areas through which
they travel. However, in the Contamination algorithm, which had the lowest error among the
algorithms compared, only the weight of the maximum contamination term has value, the other
weights are equal to 0. Because of this, the ASVs go straight and exploit the area where there is
the highest level of contamination.

Table 1. Comparison of the error of the seven algorithms

Algorithm c1 c2 c3 c4 Error

Local Best 3 0 0 0 0.26254 ± 0.85916
Global Best 0 3 0 0 1.04980 ± 1.44375
Uncertainty 0 0 3 0 0.45391 ± 0.84466
Contamination 0 0 0 3 0.00536 ± 0.01318
Classic PSO 2 2 0 0 0.58460 ± 1.36174
Enhanced GP-based PSO 3.6845 1.5614 0 3.1262 0.00539 ± 0.01400
Epsilon Greedy 1; 4 4; 1 4; 1 1; 4 0.48916 ± 1.32377

5 Conclusion

In this article, comparisons between PSO-based path planners have been developed. The results
showed that the Contamination algorithm performed the best in finding the most contaminated
area of the Ypacarai Lake. By a small difference of 3x10−5, the second best performance was
obtained by the Enhanced GP-based PSO, where the values of the acceleration coefficients were
obtained by applying Bayesian optimization.
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Abstract. The simulation-based and computationally expensive prob-
lem tackled in this paper addresses COVID-19 vaccines allocation in
Malaysia. The multi-objective formulation considers simultaneously the
total number of deaths, peak hospital occupancy and relaxation of mo-
bility restrictions. Evolutionary algorithms have proven their capability
to handle multi-to-many objectives but require a high number of com-
putationally expensive simulations. The available techniques to raise the
challenge rely on the joint use of surrogate-assisted optimization and par-
allel computing to deal with computational expensiveness. On the one
hand, the simulation software is imitated by a cheap-to-evaluate surro-
gate model. On the other hand, multiple candidates are simultaneously
assessed via multiple processing cores. In this study, we compare the per-
formance of recently proposed surrogate-free and surrogate-based paral-
lel multi-objective algorithms through the application to the COVID-19
vaccine distribution problem.

1 Introduction

In this paper, we address a multi-objective (MO) COVID-19 vaccines alloca-
tion problem. We aim to identify vaccines allocation strategies that minimize
the total number of deaths and peak hospital occupancy, while maximizing the
extent to which mobility restrictions can be relaxed. The onset of the COVID-19
outbreak has been rapidly followed by the development of dedicated simulation
software to predict the trajectory of the disease [1, 2]. The availability of such
tools enables one to inform authorities by formulating and solving optimization
problems. In [3], a SEIR-model (Susceptible, Exposed, Infectious, Recovered)
is deployed to simulate COVID-19 impacts. A single-objective (SO) problem is
subsequently derived and handled by grid-search to regulate the alleviation of
social restrictions. Multiple SO optimizations are carried out independently by
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a simplex or a line search algorithm in [4–6] to efficiently allocate doses of vac-
cines to the age-categories of a population. The number of infections, deaths and
hospital admissions are considered as the possible objective. The prioritization
rules approved by the government of the studied cohort are integrated as con-
straints in the linear programming model presented in [7] to minimize mortality.
In [8], multiple indicators are combined into a scalar-valued objective function.
The MO formulation exhibited in [9] consists in maximizing the geographical
diversity and social fairness of the distribution plan. Nevertheless, the MO prob-
lem is scalarized into a SO one that is then solved by a simplex algorithm. The
approach used by Bubar and colleagues [10] is significantly different to ours,
as the authors predefined a set of vaccination strategies and selected the most
promising approach among them. In contrast, our continuous optimisation ap-
proach automatically designs strategies in a fully flexible way. The optimisation
problem solved by McBryde and colleagues [11] is closer to that presented in
our work since a similar level of flexibility was allowed to design optimal vac-
cines allocation plans. However, the authors used a simpler COVID-19 model
resulting in significantly shorter simulation times, such that optimisation could
be performed using more classical techniques. To the best of our knowledge, it
has not been suggested yet to simultaneously minimize the number of deaths,
peak hospital occupancy and the degree of mobility restriction through a MO-
formulated problem. The fact that we consider the level of restrictions as one of
the objectives to minimise represents a novelty compared to the previous works.

Despite the relative computational expensiveness of infectious disease trans-
mission simulators, surrogate-based optimization has been rarely applied to the
field. In [12], we harnessed surrogate models to determine the allocation of pre-
ventive treatments that minimize the number of deaths caused by tuberculosis
in the Philippines. The identification of the regime for tuberculosis antibiotic
treatments with lowest time and doses is formulated as a SO problem in [13]
and solved by a method relying on a Radial Basis Functions surrogate model.
The work presented in [14] deviates from this present study in that it aims to
conceive a model prescribing the actions to perform according to a given situ-
ation. It is actually more related to artificial neural network hyper-parameters
and architecture search. What is called ”surrogate” in [14] is actually denomi-
nated ”simulator” in simulation-based optimization. In this work, we combine
machine learning and parallel computing to solve the MO vaccine distribution
problem.

This study demonstrates the suitability of parallel surrogate-based multi-
objective optimization algorithms on the real-world problem of COVID-19 vac-
cines allocation. The COVID-19-related problem is detailed in Section 2 and the
MO algorithms are exposed in Section 3. Both surrogate-based and surrogate-
free parallel MO approaches are applied to the real-world challenge in Section 4
and empirical comparisons are realized. Finally, conclusions are drawn in Section
5 and suggestions for future investigations are outlined.

289



Parallel Surrogate-based Multi-Objective Optimization 3

2 COVID-19 vaccine distribution problem

The vast vaccination programs implemented over the last year or so all around
the world achieved dramatic reductions of COVID-19 hospitalizations and deaths
[15]. However, access to vaccination remains challenging, especially for low- to
middle-income countries that are not able to offer vaccination to all their citizens
[16]. The problem we are concerned with consists in optimizing the age-specific
vaccines allocation plan to limit the impact of the disease in Malaysia under
a capped number of doses. The population is divided into 8 age-categories of
10-years band from 0-9 years old to 70+ years old and the impact is expressed
in terms of total number of deaths and peak hospital occupancy.

The simulation is realized in three phases by the AuTuMN software publicly
available in https://github.com/monash-emu/AuTuMN/. The simulator is cali-
brated during the first phase with data accumulated from the beginning of the
epidemic to the 1st of April 2021. The second phase starts at this latter date
and lasts three months during which a daily limited number of doses is shared
out among the population. Relaxation of mobility restrictions marks the kickoff
of the third phase in the course of which a new distribution plan is applied in-
volving the same number of daily available doses as in phase 2.

Decision variables xi ∈ [0, 1] for 1 ⩽ i ⩽ 8 and for 9 ⩽ i ⩽ 16 represent the
proportions of the available doses allocated to the 8 age-categories for phase 2 and
phase 3 respectively. Variable x17 ∈ [0, 1] expresses the degree of relaxation of
mobility restrictions where x17 = 0 leaves the restrictions unchanged and x17 =
1 means a return back to the pre-covid era. The following convex constraints
convey the limitation of the number of doses during phases 2 and 3:

8∑

i=1

xi ⩽ 1 and

16∑

i=9

xi ⩽ 1 (1)

The three-objective optimization problem consists in finding x∗ such that

x∗ = argmin
x∈[0,1]17 s.t. (1)

(g1(x), g2(x), 1− x17) (2)

where g1(x) is the simulated total number of deaths and g2(x) the simulated
maximum number of occupied hospital beds during the period.

3 Parallel Multi-Objective Evolutionary Algorithms

3.1 Variation Operators of Evolutionary Algorithms

Evolutionary Algorithms (EAs) are harnessed to deal with the COVID-19-related
problem exhibited previously. In EAs, a population of solutions is evolved through
cycles of parents selection, reproduction, children evaluation and replacement.
EAs are chosen because they have proven their effectiveness on numerous multi-
objective real-world problems [17] where the objective functions are black-box
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as it is the case in our scenario. The constraint being convex and analytically
verifiable, it is thus possible to design specific reproduction operators that di-
rectly generate feasible candidates. Assuming that every feasible solution can be
reached, this technique has shown to be a reliable one [18].

The specific cross-over operator, called distrib-X, considers the two phases
and the degree of relaxation independently. For two parents x and y, the last
decision variable for the two children z and t is set such that z17 = x17 and
t17 = y17. Regarding the second phase, let I and J be a random partition of
{1, . . . , 8}. For the age categories in I, z receives the proportion of vaccines from
x (zi = xi for i ∈ I). The remaining proportion of available doses at this step
is r = 1 −∑i∈I xi. For the age categories in J , the remaining proportion of
doses is shared out according to the proportion allocated to the corresponding
age categories in y. In other terms, for j ∈ J , zj =

r.yj∑
j∈J yj

. A similar treatment

is applied to the variables associated to the third phase. The second child t
is generated with an analogous procedure, where the roles of the parents are
reversed.

The specific mutation operator, denoted distrib-M, disturbs a decision vari-
able randomly chosen with uniform probability for {1, . . . , 8}, {9, . . . , 16} and
{17}. The last decision variable is mutated by polynomial mutation [17]. For the
remaining ones, two age categories of the same phase are randomly selected and
a random amount of doses are transferred from the first category to the second
one. Both distrib-X and distrib-M are inspired by [12].

The intermediate and the 2-points cross-over operators [17] are also consid-
ered for the sake of comparison. The intermediate strategy combines parents by
random weighting average, while the 2-points operator distributes portions of
parents to the children. The portions are defined by two points with the first
one separating phase 2 and phase 3 and the second one located between phase
3 and the relaxation decision variable x17.

3.2 Parallel Multi-objective Evolutionary Algorithms

The major challenge in multi-objective optimization is to balance convergence
and diversity in the objective space. Convergence is related to the closeness
to the Pareto Front (PF) [17]. The PF is the set of the overall best solutions
represented in the objective space and the Non-Dominated Fronts (NDFs) are
approximations of the PF. Diversity is indicated by an extended coverage of the
objective space by the NDFs. Hereafter, we present four algorithms to set this
trade-off.

The first algorithm considered in the comparison is the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [19]. Firstly, to promote convergence, solu-
tions pertaining to better NDFs are better ranked. Secondly, to favor diversity,
solutions composing the same NDF are distinguished by setting the promise as
high as the crowding distance is high. The proposed sorting is employed at the
selection and the replacement steps of the EA.

The second algorithm reproduced for the experiments is the Reference Vec-
tor guided Evolutionary Algorithm (RVEA) proposed in [20] to handle many-
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objective problems. A set of reference vectors is introduced in order to decom-
pose the objective space and to enhance diversity. New candidates are attached
to their closest reference vector, thus forming sub-populations among which only
one candidate is kept at the replacement step. The new angle penalized distance
chooses adaptively the candidate to be conserved by favoring convergence at the
beginning of the search and diversity at latter stages. It is worth noting that the
population size may change during the search in RVEA due to the possibility
of empty sub-populations. In cases of degenerated or disconnected PF a high
number of sub-populations become empty and the NDF obtained at the end of
the search may not be dense enough. In the RVEA* variant, an additional ref-
erence vectors set is used to replace the reference vectors that would correspond
to empty sub-populations.

In surrogate-based optimization, the additional trade-off between exploita-
tion and exploration is to be specified. Minimizing the predicted objective vec-
tors (POVs) produced by the surrogate boosts exploitation of known promising
regions of the search space. Conversely, maximizing the predictive uncertainty
enhances exploration of unknown regions.

The third algorithm is the surrogate-based Adaptive Bayesian Multi-Objective
Evolutionary Algorithm (AB-MOEA) [21]. The first step of a cycle in AB-MOEA
consists in generating new candidates by minimizing the POVs thanks to RVEA.
During the second step, the new candidates are re-evaluated by an adaptive func-
tion that favors convergence at the beginning and reinforces exploitation as the
execution progresses by minimizing the predictive uncertainty delivered by the
surrogate. At the third step, q candidates are retained based on an adaptive
sampling criterion similar to the reference vector guided replacement of RVEA
to promote diversity.

The fourth algorithm is the Surrogate-Assisted Evolutionary Algorithm for
Medium Scale Expensive problems (SAEA-ME) [22]. In SAEA-ME, NSGA-II is
used to optimize a six-objective acquisition function where the three first ob-
jectives are the POVs and the last three objectives are the POVs minus the
predictive variances. From the set of proposed candidates, the q ones showing
the best hyper-volume improvement considering both the POVs alone and the
POVs minus two variances are retained for parallel simulations. SAEA-ME per-
forms well on problems with more than 10 decision variables. The dimensionality
reduction feature proposed in [22] is not considered here as it consumes compu-
tational budget and can be applied to any method.

AMulti-Task Gaussian Process (MTGP) surrogate model [23] is implemented
via the GPyTorch library [24] and incorporated into both AB-MOEA and SAEA-
ME. Using a MTGP to model multiple objectives has been realized in [25] to
control quality in sheet metal forming. In a traditional regression GP [26], a
kernel function is specified to model the covariance between the inputs, thus
allowing the model to learn the input-output mapping and to return predictions
and predictive uncertainties. In the MTGP, inter-task dependencies are also
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taken into account in the hope of improving over the case where the tasks are
decoupled.

In the present investigation, the tasks are the three objectives and five kernel
functions are considered for comparison. The widely used Radial Basis Func-
tions kernel, denoted rbf and described in [26], provides very smooth predictors.
According to [27], the Matern kernel with hyper-parameter ν = 1.5 or 2.5, called
matern1.5 and 2.5 respectively, is to be preferred to model many physical phe-
nomena. The higher predictive capacity Spectral Mixture kernel proposed in [28]
is also raised with 2 and 4 components, denominated sm2 and sm4 respectively.

4 Experiments

The computational budget is set to two hours on 18 computing cores, thus allow-
ing 18 simulations to be realized in parallel. The simulation duration varies from
one solution to another from 13 to 142 seconds on one computing core. The four
competing algorithms are implemented using our pySBO Python tool publicly
available at: https://github.com/GuillaumeBriffoteaux/pySBO. Ten repeti-
tions of the searches are carried out to ensure statistical robustness of the com-
parisons. The reference point for hyper-volume calculation is set to an upper
bound for each objective (32.106; 32.106; 1.5).

The surrogate-free approaches NSGA-II, RVEA and RVEA* are equipped
with either the distrib-X, the 2-points or the intermediate cross-over operator.
For NSGA-II, the population size ps is set to 108 or 162, thus avoiding the idling
of the computing cores. For RVEA and RVEA*, we choose ps = 105 or 171
to comply with the constraint imposed by the reference vectors initialization
and to keep values close to those imposed for NSGA-II. Ten initial populations
composed of 171 simulated solutions are generated to start the algorithms. Each
initial population is made at 85% of solutions randomly sampled within the
feasible search space and at 15% of candidates picked out on the boundary.
When ps < 171, only the best ps candidates according to the non-dominated
sorting defined in [19] are retained. For RVEA and RVEA*, a scaled version of
the problem, where the first two objectives are divided by 1000, is also considered
to demonstrate the effect of the objectives scales on the behavior of the methods.

The surrogate-based approaches AB-MOEA and SAEA-ME only integrate
the distrib-X operator and use all the 171 initial samples as initial database. For
RVEA in AB-MOEA, ps = 105 and the number of generations is fixed to 20 as
recommended in [21], while ps = 76 for NSGA-II in SAEA-ME according to the
guidance provided in [22] and the population evolved for 100 generations.

Table 1 shows the ranking of the algorithms according to the final hyper-
volumes averaged over the ten repetitions. It can be observed in Table 1 that
all the surrogate-based strategies outperform all those without surrogate. In
particular, SAEA-ME with the matern1.5 kernel is the best approach. The
MTGP equipped with the matern1.5 covariance function is preferred in both
the SAEA-ME and AB-MOEA frameworks. Regarding the surrogate-free meth-
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ods, NSGA-II with the distrib-X cross-over mechanism and ps = 108 yields the
best averaged hyper-volume. It is worth noticing that the distrib-X operator,
specifically designed for the problem at hand, is to put forward as it surpasses
both the intermediate and the 2-points strategies in all contexts. Among the
RVEAs, the best variant is RVEA* with ps = 105 and the distrib-X cross-over
thus indicating a possibly degenerated or disconnected PF. Indeed, the PF is
certainly degenerated as indicates Figure 1 where are plotted the objective vec-
tors from the ten final NDFs obtained by SAEA-ME with the matern1.5 kernel.
When analyzing the influence of objectives scales over the efficiency of RVEA
and RVEA*, the conclusions drawn in [20] are confirmed as both algorithms
are more appropriate when objectives have similar scales. Indeed, the three ob-
jectives lie in [1655; 13, 762], [843; 10, 962] and [0; 1], respectively. The previous
ranges are approximated a posteriori based on 250,664 simulations performed in
RVEA and RVEA* on the original problem. The necessity to adequately scale
the objectives brings a disadvantage to RVEAs as the scaling weights are tedious
to define especially in the context of black-box expensive simulations. Another
drawback is the constraints on the population size preventing to totally impede
the idling of computing cores in all scenarios.

Fig. 1. Best NDFs from the 10 repetitions for SAEA-ME with matern1.5 kernel.

Figure 2 monitors the averaged hyper-volume as the search proceeds for the
best strategy per category according to Table 1. The hyper-volume improves
sharply at the very beginning of the search for the surrogate-based methods and
reaches convergence rapidly (around 300 to 500 simulations). NSGA-II converges
much slower but seems not to have converged at the end of the execution. By
the right extremities of the curves, it could be expected that the hyper-volume
returned by NSGA-II exceeds the one from AB-MOEA for larger numbers of sim-
ulations. However, reiterating the experiments for a time budget of four hours has
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Algorithm Cross-over Population GP kernel Objectives Averaged final
operator size scaling Hyper-volume

(×1010 + 1.535× 1015)

SAEA-ME distribX 76 matern1.5 - 80.1800
SAEA-ME distribX 76 matern2.5 - 80.1610
SAEA-ME distribX 76 rbf - 79.9541
SAEA-ME distribX 76 sm2 - 79.6701
AB-MOEA distribX 105 matern1.5 - 79.6200
AB-MOEA distribX 105 matern2.5 - 79.5879
SAEA-ME distribX 76 sm4 - 79.5789
AB-MOEA distribX 105 sm4 - 79.4861
AB-MOEA distribX 105 sm2 - 79.4841
AB-MOEA distribX 105 rbf - 79.4304
NSGA-II distribX 108 - - 79.3337
NSGA-II distribX 162 - - 79.1876
RVEA* distribX 105 - yes 77.2805
RVEA* distribX 171 - yes 77.2514
RVEA distribX 171 - yes 77.1287
RVEA distribX 105 - yes 77.0117

NSGA-II intermediate 108 - - 76.9946
NSGA-II intermediate 162 - - 76.8320
NSGA-II 2-points 162 - - 75.6959
NSGA-II 2-points 108 - - 75.5889

RVEA distribX 105 - - 75.5184
RVEA* intermediate 171 - yes 75.3816
RVEA* intermediate 105 - yes 75.2841
RVEA intermediate 171 - yes 75.2006
RVEA intermediate 105 - yes 75.1562
RVEA* distribX 105 - - 75.1555
RVEA* distribX 171 - - 75.1372
RVEA distribX 171 - - 75.0563
RVEA* 2-points 171 - yes 74.9803
RVEA 2-points 171 - yes 74.9195
RVEA 2-points 105 - yes 74.7692
RVEA* 2-points 105 - yes 74.7535
RVEA* intermediate 105 - - 74.5607
RVEA intermediate 105 - - 74.5585
RVEA intermediate 171 - - 74.4959
RVEA* intermediate 171 - - 74.4266
RVEA 2-points 171 - - 74.3694
RVEA 2-points 105 - - 74.3518
RVEA* 2-points 171 - - 74.3264
RVEA* 2-points 105 - - 74.2507

Table 1. Ranking of the surrogate-based and surrogate-free approaches according to
the averaged final hyper-volumes over the 10 repetitions.
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not allowed to verify this expectation. Figure 2 specifies that the impact of objec-
tives scaling on RVEAs appears from around 300 simulations. In the setting of a
capped computational budget, it is important to strongly favor convergence and
exploitation at the onset of the search. SAEA-ME and AB-MOEA realizes this
by minimizing the POVs at the top beginning of the execution. The difference
between the two approaches lies in the incorporation of the predictive uncer-
tainty. In SAEA-ME, a degree of exploration is maintained by maximization of
the predictive variance. Conversely, minimization of the predictive uncertainty
is involved at latter stages in AB-MOEA. In spite of the convergence-oriented
strategy adopted by RVEAs at the early stages of the search, the embedded
mechanism set up to handle many objectives is quite heavy and reveals to be
unsuitable when the computational budget is restricted. Indeed, in [20] the al-
gorithms are run from 500 to 1,000 generations while 10 to 20 generations are
allowed by our computational budget.

Reducing the solving time of moderately expensive optimization problems
where the simulation lasts less than five minutes may enable to manage opti-
mization under uncertainty. As the calibration of the simulation tool is uncertain,
multiple configurations of its parameters can be considered, resulting in multiple
optimization exercises to be executed and thus enabling to gain insight about
the variability of the results.

Fig. 2. Averaged hyper-volume according to the number of simulations.

The optimal allocation plan implies providing 70% of the doses to the 10-19
years old age-group and 30% to the 20-29 age-group during phase 2 according to
Figure 3. In phase 3, 70% of the doses are assigned to 20-29 years old individuals
and 15% to both the 40-49 and 10-19 age-categories. This plan prioritizes the
vaccination of younger adults as they are the most transmitting cohort because
of their high contact rate in the population [29]. Nevertheless, the present re-
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sults have to be considered with caution. Since our experiments date back to the
beginning of 2021, few feedback about vaccination efficiency was available. It is
assumed here that the vaccine reduces transmission although it might not be
the case for the Omicron variant of concern that started to break through the
world at the end of 2021. Our results are similar to those presented in [30, 31] for
influenza. From Figure 4 where the total number of deaths and the maximum
number of occupied hospital beds are displayed with respect to the relaxation
variable x17, the alleviation of the physical distancing reveals to trigger an aug-
mentation of the hospital occupancy and deaths.

Fig. 3. Vaccines distribution according to age-categories. Averaged solutions from the
best final NDFs returned by the 10 repetitions for SAEA-ME with matern1.5 kernel.

Fig. 4. Total number of deaths and maximum number of occupied hospital beds ac-
cording to relaxation of the physical distancing x17. Best NDFs from the 10 repetitions
for SAEA-ME with matern1.5 kernel.
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5 Conclusion

This paper demonstrates the suitability of parallel surrogate-based multi-objective
optimization algorithms to handle the moderately computationally expensive
COVID-19 vaccines allocation problem for Malaysia. In particular, SAEA-ME
provides reliable results in a fast way. As future works, we suggest to benefit from
the computational cost reduction of black-box simulation-based problem solving
to take the uncertainty around the calibration of the simulator into account.
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Abstract. This paper presents and analyzes ForestDisc, a discretiza-
tion method based on tree ensemble and moment matching optimiza-
tion. ForestDisc is a supervised and multivariate discretizer that trans-
forms continuous attributes into categorical ones following two steps. At
�rst, ForestDisc extracts for each continuous attribute the ensemble of
split points learned while constructing a Random Forest model. It then
constructs a reduced set of split points based on moment matching op-
timization. Previous works showed that ForestDisc enables an excellent
performance compared to 22 popular discretizers. This work analyzes
ForestDisc performance sensitivity to its tunning parameters and pro-
vides some guidelines for users when using the ForestDisc package.

Keywords: Discretization · Optimization · Classi�cation

1 Introduction

Discretization is a key pre-processing step in Machine Learning (ML). It is used
to reduce the complexity of the data space and to improve the performance and
e�ciency of ML tasks [20]. Furthermore, it is a required pre-processing step for
several ML algorithms which only support categorical features. The usefulness of
discretization in ML, especially prior to classi�cation tasks, has led to the emer-
gence of di�erent discretization approaches. The literature has classi�ed them
based on di�erent dimensions, as being supervised versus unsupervised and mul-
tivariate versus univariate [19][28][7][24].
Supervised discretization approaches consider the target attribute in the dis-
cretization process, which is expected to make them more �knowledgeable� in
determining the best splits than their �blind� unsupervised counterparts [24][1].
They use di�erent metrics to minimize the loss of information between the dis-
cretized attributes and the target attribute on the one hand, and the number
of split points on the other hand [6][26]. Several comparative studies reported
better performance for supervised discretization methods compared to unsuper-
vised ones [24][1].
Multivariate discretizers consider all data attributes simultaneously during their
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processing, while univariate discretizers consider attributes one at a time. Mul-
tivariate discretization is sensitive to the data's correlation structure, unlike
unsupervised one [22].
ForestDisc, a supervised and multivariate discretization proceeds in two main
steps: First, it extracts the split points generated while learning a Random For-
est (RF) model and then builds a set of cut points for each continuous attribute
to produce its partition into bins. This second step relies on moment matching
optimization to identify a set of cut points that optimally matches the statistical
properties of the ensemble of split points generated through the RF model. A
previous work [20] has demonstrated that ForestDisc reached an excellent per-
formance compared to 20 other discretizers. The comparative analysis took into
consideration di�erent metrics. These metrics included the number of resulting
bins per variable and the execution time needed for discretizing it. They also
reported the performance of classi�ers when discretization is applied before the
classi�cation task. This study was performed using 50 benchmark datasets and
six well-known classi�ers.
ForestDisc is available as an R package: ForestDisc [12][13]. The �rst step in
ForestDisc is processed using an RF model with 50 trees. The second step uses
the �rst four moments in the moment matching approach and Nelder-Mead as
an optimization algorithm.
In this work, we analyze the sensitivity of ForestDisc performance to the number
of trees, the number of moments used, and the optimization algorithm used.
Accordingly, we present in the next section, ForestDisc related work. In section
3, we present ForestDisc sensitivity analysis to its tunning parameters. Finally,
we provide in the last section the conclusion.

2 Related work

2.1 ForestDisc algorithm

ForestDisc processes discretization in two stages. In the �rst stage (Algorithm
1), ForestDisc generates the ensemble of split points learned by an RF model. In
the second stage (Algorithm 2), ForestDisc uses this ensemble and returns the
set of cut points based on moment matching optimization.
Let Data represent a dataset. Let AttCont be the set of its continuous at-
tributes. Let S = {SA}A∈AttCont be the ensemble of splits values that would
be learned throught an RF model. Each set SA corresponds to an attribute A.
Let C = {CA}A∈AttCont be the ensemble of cut points that would be learned,
where CA is the set of cut points discretizing the attribute A. Let Kmax be the
maximum value allowed for CA cardinality.

2.2 ForestDisc tunning parameters

We analyze in this section ForestDisc performance variability depending on the
number of trees used in the RF model, the non-linear optimization algorithm
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Algorithm 1 ForestDisc Algorithm - Step I

Input: Data
Output: S

Initialization: S = null

Fit Random Forest to Data
Return: RF = {T1, ..., TnRF } ▷ ensemmble of trees of cardinality nRF

for each A ∈ AttCont do

Initialize: SA = null
for each tree T in RF do

Extract ST
A ▷ set of split values in tree T

Update SA = SA ∪ ST
A

end for

end for

Return: S = {SA}A∈AttCont

Algorithm 2 ForestDisc Algorithm - Step II

Input: Data , AttCont , S , Kmax ▷ Kmax set by default to 10
Output: C , DataDisc

Initialization: C = null

▷ We will solve, in the following, the moment matching problem (MMP) with nm

moments
for each A ∈ AttCont do

for j ∈ {0...nm} do
Compute SA moment of order j : mj

A =
∑nA

i=1 SA
j
i

nA
▷ nA is SA cardinality

Compute SA weight of order j : wj
A = 1

max(max(SA),−min(SA),1)2j

end for

for k ∈ {2...Kmax} do
Solve the moment matching problem:

Objective function MMP(A,k): min(Pk,Xk)
∑nm

j=0 w
j
A

(
mj

Xk
−mj

A

)2

where mj
Xk

=
∑k

i=1 pixi
j , and Xk = {x1, ..., xk} and Pk = {p1, .., pk}

are the decision variables.

Constraints:
∑k

i=1 pi − 1 = 0 and min (SA) ≤ xi ≤ max (SA)
and 0 ≤ pi ≤ 1 for i=1...k

Return: X∗
k and P ∗

k the solution to MMP(A,k), and Opt∗k the optimum value
end for

Return: XA={X∗
k}k∈{2..Kmax} and OptA={Opt∗k}k∈{2..Kmax}

Select kopt the value k corresponding to the minimum value in the set OptA
Return: CA = X∗

kopt

end for

Return: C = {CA}A∈ContAttr
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used for solving the MMP (Algorithm 2), and the number of moments consid-
ered in MMP. We consider in this work three tunning parameters for ForestDisc.

Number of trees: ForestDisc is based on the decision trees grown by an RF
model to build an ensemble of split points partitioning the continuous attributes
in a supervised and multivariate way (Algorithm 1). RF is known, in the lit-
erature, as an e�cient ensemble learning, robust against over�tting, and user-
friendly [21]. However, the number of trees is an important tuning parameter
that generally in�uences the performance of an RF model. The optimal number
of trees is problem dependant and users generally resort to comparative analysis
to assess how the number of trees impacts the RF performance. We will analyze
in the following sections how ForestDisc performance varies depending on the
number of trees used.

Optimization algorithm: The moment matching problem introduced in Algo-
rithm 2 is a non-linear optimization (NLO) problem. NLO [2] solves optimization
problems where the objective function or some of the equality or inequality con-
straints are non-linear. We compared in previous work [14], the performance of
22 NLO Algorithm on solving the discretization based on MMP. The discretizer
used in [14] is a simpli�ed version of ForestDisc. It is a univariate and unsuper-
vised discretization method, mapping each continuous attribute to a categorical
attribute based on MMP. The performance of the 22 NLO Algorithms was com-
pared based on multiple measures. The empirical results showed that the Nelder-
Mead Simplex Algorithm [23] (Neldermead) achieved the best tradeo� between
intrinsic and extrinsic measures [20]. The DIviding RECTangles (locally biased)
algorithm [16] (DIRECTL) realized the second-best tradeo�, and the Sequential
Least-Squares Quadratic Programming algorithm [17][18] (SLSQP) performed
the best matching (optimum value). We compare in the following sections how
ForestDisc performance changes regarding these 3 NLO algorithms.

Number of moments The moment matching mapping used in ForestDisc is
based on the approach proposed in [46]. Authors in this work have conducted
moment matching based on the �rst four moments to generate a limited num-
ber of discrete outcomes. Furthermore, the �rst four moments are widely known
to characterize important statistics of random variables, namely, the mean, the
variance, skewness, and kurtosis, which convey practical insights about distri-
butions of random variables. ForestDisc proposed in [20] also uses the four �rst
moments. This being said, it is worthwhile to investigate to what extent changing
the number of moments in MMP (Algorithm 2) would impact the performance
of the resulting discretization. The following sections investigate the sensitivity
of ForestDisc to the number of �rst moments used in MMP.
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3 ForestDisc sensitivity analysis

3.1 Experimental Set Up

In this section, we evaluate the sensitivity of ForestDisc to its tunning param-
eters: the number of trees, the number of moments, and the optimization algo-
rithm used. We use the following metrics in this comparative analysis.
The �rst one is the optimum value, which is the solution to the moment match-
ing problem described in Algorithm 2. The second one is the execution time
required for discretizing an attribute. The third one is the number of resulting
bins per discretized attribute.
The fourth and �fth metrics concern the predictive performance of classi�ers
pre-processed by discretization. The predictive performance is assessed via ac-
curacy and F1 measures (details about the computation of each of these metrics
can be found in [20]). Five well known classi�ers are used in this compara-
tive study: Classi�cation And Regression Trees (CART) [4], Random Forest
(RF) [3], Tree Boosting (Boosting) [9][5], Optimal weighted K-nearest neigh-
bor classi�er (KNNC) [25], and Naive Bayes Classi�er (NaiveBayes) [10]. Their
respective R functions/packages are: rpart/rpart, randomForest/randomForest,
xgboost/xgboost, kknn/kknn, and naiveBayes/e1071. The default parameters
were used for each of the aforementioned functions. RF and Boosting were per-
formed using 200 trees.
We also use the Wilcoxon signed-rank test [27] to statistically compare the dif-
ferent results. We adopt the approach used in [11] [20] to perform pairwise com-
parisons of the metrics considered in this study. The results are summarized by
counting the times each method outperforms, ties, and underperforms.
We analyze the di�erent metrics by using benchmark datasets taken from the
UCI Machine Learning [8] and Keel data sets repository [15]. Each data set is
processed 10 times using Monte Carlo cross-validation procedure (refer to [20]
for more details).

3.2 ForestDisc sensitivity to the number of trees and the non-linear

optimization algorithm used

We report in Figure 1 the average results on accuracy and F1 score over the
�ve classi�ers, the 50 datasets used in [20], and the 10 iterations. These results
show that the Neldermed algorithm outperforms the DIRECTL and SLSQP al-
gorithms regardless of the number of trees used. Moreover, increasing the number
of trees does not seem to induce an improvement in predictive performance re-
gardless of the NLO algorithm used. The Wilcoxon test results reported in Table
1 con�rm this conclusion.
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Fig. 1: Variation of the average accuracy and F1 score on the testing sets
depending on the number of trees and the NLO algorithms used

Table 1: Wilcoxon signed-rank test scoring in global accuracy and F1 score
depending on the number of trees and the NLO algorithms used (on the testing

sets)

Accuracy F1 measure

Method Wins Ties Losses Method Wins Ties Losses

Neldermead50 7 1 0 Neldermead50 7 1 0
Neldermead100 7 1 0 Neldermead100 7 1 0
Neldermead200 6 0 2 Neldermead200 5 1 2
DIRECTL50 3 2 3 DIRECTL100 3 3 2
DIRECTL100 3 2 3 DIRECTL50 3 2 3
DIRECTL200 3 2 3 DIRECTL200 3 2 3
SLSQP50 2 0 6 SLSQP50 1 1 6
SLSQP100 0 1 7 SLSQP100 0 2 6
SLSQP200 0 1 7 SLSQP200 0 1 7

Figure 2 displays the average results on the execution time per discretized
variable and the number of intervals per variable. Based on these results, the
Neldemead algorithm outperforms the other NLO algorithms in terms of execu-
tion time regardless of the number of trees used. In addition, the execution time
increases as the number of trees increases regardless of the NLO used.
The number of intervals does not seem to vary according to the number of trees.
Neldermead algorithm tends to produce the highest number of bins (between
6.5 and 7 intervals), followed by DIRECTL (between 4 and 5), and lastly by
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SLSQP (slightly less than 4). The Wilcoxon results reported in Table 2 are in
accordance with these conclusions.
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Fig. 2: Variation of the average execution time and number of intervals
depending on the number of trees and the NLO algorithms used

Table 2: Wilcoxon signed-rank test scoring in Execution time and number of
intervals depending on the number of trees and the NLO algorithms used (on

the testing sets)

Execution time Number of intervals

Method Wins Ties Losses Method Wins Ties Losses

Neldermead50 8 0 0 SLSQP50 6 2 0
Neldermead100 7 0 1 SLSQP100 6 2 0
DIRECT50 6 0 2 SLSQP200 6 2 0
DIRECT100 5 0 3 DIRECT50 5 0 3
Neldermead200 4 0 4 DIRECT100 4 0 4
DIRECT200 3 0 5 DIRECT200 3 0 5
SLSQP50 2 0 6 Neldermead50 1 1 6
SLSQP100 1 0 7 Neldermead100 1 1 6
SLSQP200 0 0 8 Neldermead200 0 0 8
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3.3 ForestDisc sensitivity to the number of moments used

In this section, we analyze the sensitivity of ForestDisc to the number of �rst
moments used in the MMP. This analysis is performed by varying the number
of moments from 2 to 7, on a selection of 15 benchmark data sets used in a
previous work [13].
Figure 3 reports the average results on the optimum values (MMP solutions), the
execution time per discretized variable, and the number of intervals per variable.
These results show that the optimum value is the greatest when 4 moments are
used. Nevertheless, the use of 4 moments allows for a very good moment match-
ing since the value of the optimum value remains very small (less than 1E-10 in
general ). The execution time tends to be slightly higher when 4 or 6 moments
are used. Finally, the number of intervals tends to be slightly smaller when 4 or
6 moments are used.
Figures 4 and 5 display the variation of 5 classi�ers' accuracy and F1 score de-
pending on the number of moments used. The results are plotted on the training
and testing sets. Table 3 reports the Wilcoxon signed test scores computed using
accuracy and F1 scores on the testing sets. The results show that there is not
a signi�cant di�erence in predictive performance depending on the number of
moments used, except for 7 moments (the worst results for all the classi�ers).
Using 4 moments seems to be a good alternative for all the classi�ers (see Ta-
ble 3). However, we think that we should use a more extensive analysis to have
a robust conclusion about the impact of the number of moments used on the
classi�ers' predictive performance.
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Table 3: Wilcoxon signed-rank test scoring in classi�ers accuracy and F1 score
depending on the number of moments (on the testing sets)

Accuracy F1 measure

Classi�er Moments Nbr Wins Ties Losses Classi�er Moments Nbr Wins Ties Losses

Boosting

4 2 3 0

Boosting

4 2 3 0
6 2 3 0 3 1 4 0
3 1 4 0 6 1 4 0
2 1 4 0 2 1 4 0
5 1 2 2 5 1 3 1
7 0 0 5 7 0 0 5

CART

4 2 3 0

CART

4 3 2 0
6 1 4 0 2 2 3 0
5 1 4 0 5 1 4 0
2 1 4 0 3 1 3 1
3 1 3 1 6 1 2 2
7 0 0 5 7 0 0 5

KNNC

4 3 2 0

KNNC

4 1 4 0
3 3 2 0 3 1 4 0
2 1 4 0 2 1 4 0
5 1 2 2 5 1 4 0
6 1 2 2 6 1 4 0
7 0 0 5 7 0 0 5

NaiveBayes

3 2 3 0

NaiveBayes

4 1 4 0
4 1 4 0 3 1 4 0
6 1 4 0 2 1 4 0
2 1 4 0 5 1 4 0
5 1 3 1 6 1 4 0
7 0 0 5 7 0 0 5

RF

3 2 3 0

RF

3 2 3 0
4 1 4 0 4 1 4 0
6 1 4 0 6 1 4 0
2 1 4 0 2 1 4 0
5 1 3 1 5 1 3 1
7 0 0 5 7 0 0 5

4 Conclusion

In this work, we have investigated the sensitivity of the ForestDisc discretizer to
its tunning parameters. ForestDisc discretizes continuous attributes in two steps.
First, it uses the ensemble of decision trees grown by an RF model to build an
ensemble of split points partitioning the continuous attributes. It then relies on
moment matching optimization to return a reduced set of cut points for dis-
cretizing each continuous attribute. A previous work [20] has demonstrated that
ForestDisc reached an excellent performance compared to 20 other discretizers,
based on extensive analysis on 50 benchmark datasets and six well-known clas-
si�ers.
We have analyzed, in this work, the sensitivity of ForestDisc performance to
its tunning parameters by varying the number of trees from 50 to 200 and the
number of moments from 2 to 7. We have also used two other alternatives for
the optimization algorithm used. This preliminary analysis has shown that us-
ing 50 trees, four moments, and the Neldermead algorithm in the ForestDisc
framework leads to the best performance. We think, however, that we should, in
future work, expand the ranges of the number of trees and the number of mo-
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ments to make a robust conclusion about the sensitivity of ForestDisc to these
two parameters.
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